PIKolitz, Stephan OrgDraper Laboratory
Award #AIST-05-0059Managing CenterGSFCStatusOpen
TitleSensor Web Dynamic Replanning

We will propose to extend the dynamic replanning capability of Draper's Earth Phenomena Observing System (EPOS), which has successfully demonstrated the capability to dynamically replan the activities of NASA space-based sensor assets to maximize the return of useful science measurements (e.g., ensure cloud free targeting). We will propose to enhance and extend EPOS to include the replanning of sensors on UAVs (Unmanned Aerial Vehicles) and USVs (Unmanned Surface Vessels) being fielded by NASA over the next few years. The new dynamic replanning capability will utilize complementary and cooperative suites of heterogeneous sensor assets that can be triggered by observation data and/or predictive models to adaptively respond to significant events and provide enhanced understanding of temporal Earth phenomena. An event-driven use of a sensor web would be to task sensor resources in response to observation-triggered cues for phenomenon, such as harmful algal bloom outbreaks. A model-driven use of a sensor web would be to task sensor resources in response to significant increases in meteorological forecast model error growth due to model sensitivities within specific atmospheric regions. The events and phenomena that present the largest potential payoff to the proposed replanning capability are characterized by being localized and transient and also capable of causing damage to both human life and property, e.g., weather (tornadoes, hurricanes, etc.), harmful algal blooms, volcanic eruptions, ice shelf break-up, seismic activities, oil spills, and search and rescue. In addition, the replanning capability will be enhanced to handle outages and failures of individual sensors.