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Abstract— Modern sensor networks are collecting enormous
volumes of observational information about geophysical systems.
These sensor arrays, including GPS networks, ocean buoys, and
seismic networks, are often designed to detect one particular
phenomenon, but also capture signatures generated by a wide
variety of other processes. We present a method for identifying,
detecting, and cataloging these signals.

Our method is based on the use of hidden Markov models
(HMMs). HMMs are statistical models for time series data; fitting
an HMM allows use to describe the statistics of the data in a
simple way that ascribes discrete modes of behavior to the system.
Our HMM fitting algorithm, which uses a regularized determin-
istic annealing expectation-maximization (RDAEM) procedure,
allows for far greater solution stability than other methods, even
when the model is unconstrained. This has two benefits. First,
the method can be used in situations in which the underlying
system model is unavailable or unreliable. Second, the method
can be used in applications where the stability and reliability of
results is paramount.

This approach has been implemented in our software,
called RDAHMM (Regularized Deterministic Annealing Hidden
Markov Models), and integration with the SCIGN and SOPAC
GPS networks through the QuakeSim project web portal envi-
ronment is ongoing.

I. INTRODUCTION

In the course of scientific investigation there are often
situations in which the quantity of observational data greatly
outpaces corresponding explanatory theory. In such scenarios
statistical models become a valuable step in the research
cycle. In this work we focus on the use of hidden Markov
models (HMMs). HMMs are an attractive tool for the analysis
of scientific data because many physical systems are time-
ordered and exhibit evidence of discrete modes of behavior.
For example, in seismology, the system undergoes distinct
changes before and after an earthquake.

One challenge of HMM optimization is the problem of
local maxima in the objective function, which can lead to
divergent outcomes of the model fitting procedure. In ap-
plication domains in which HMMs have previously enjoyed
significant success, such as speech processing and recogni-
tion, the problem of local maxima is overcome primarily by
the application of various constraints. In some cases, these
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constraints are motivated by other concerns, such as ensuring
robust estimates of output distributions, but nevertheless result
in a reduction of the number of free parameters. These
constraints include restrictions on the form of the state-to-
state transition probability matrix [1]-[3], restrictions on the
form of the output distributions [4], and parameter tying [5]-
[7]. At their core, all of these approaches capitalize on the
availability of extensive prior information about the underlying
system. In our motivating scenario, such information is usually
unavailable and so an alternative approach to learning the
parameters of the HMM is required.

We address this problem by using the regularized determin-
istic annealing expectation-maximization (RDAEM) procedure
[8] to perform the HMM fitting. This method constructs
high-quality, self-consistent model fits without using a priori
information (although it does not exclude the use of such
information where available), at the cost of some additional
computation time. By building on this basic approach, we can
provide a number of analysis capabilities for time series data.
These capabilities include:

e Mode Segmentation: a time series containing unknown
activity is segmented into statistically significant behavior
modes.

o Sensor Network Change Detection: mode segmentation
analysis is applied to each sensor in a network; when
modes change simultaneously across the entire network
or within a significant sub-network, an alert is triggered.

e Signal Search: a user identifies a signal of interest in
streaming or stored data, and matches to this data ranked
according to relevance are retrieved from stored data.

We begin in Section II with a description of the RDAEM
algorithm for fitting hidden Markov models (HMMs) and
provide an example of its benefits as compared to standard
methods on a sample GPS data set. In the subsequent sections
we describe in more detail the three capabilities discussed
above.

II. FITTING HIDDEN MARKOV MODELS

We start our description of the RDAEM algorithm for fitting
HMMs by establishing some notation: a hidden Markov model
A with N states is composed of a vector of initial state
probabilities 7 = (m,...,7y), a matrix of state-to-state
transition probabilities A = (a11,- .., aij,...,ann), and the
observable output probability distributions B = (by,...,bx).
The observable outputs can be either discrete or continuous.



Here we are concerned with continuous valued outputs with
probability distributions denoted by b;(y, 6;) where y is the
real-valued observable output (scalar or vector) and the 6;s are
the parameters describing the output probability distribution.
For the normal distribution we have b;(y, u;, ;). An obser-
vation sequence O of length T is denoted 0105 - - - O and a
state sequence () of the model is denoted ¢1¢2 - - - g7

A. Deterministic Annealing

Deterministic annealing is a technique inspired by statistical
mechanics, that can be used to reduce the sensitivity to initial
conditions of the well-known expectation-maximization (EM)
method. Deterministic annealing uses the principle of max-
imum entropy to specify an alternative posterior probability
density for the hidden variables, allowing us to define a new
effective cost function depending on a temperature parameter.
This new cost function is analogous to the thermodynamic
free energy. Maximization of the likelihood of the model
at a given temperature is achieved via minimization of this
cost function. Deterministic annealing attempts to avoid the
standard problems associated with simulated annealing [9],
such as relaxation from initial conditions and false local
minima in the free energy, through deterministic optimization
of the cost function at each temperature. In theory, it provides
similarly global solutions with less variance, while reducing
average computational cost.

We can apply the deterministic annealing method to HMM
optimization as follows (for more details, see [8], [10], and
[11]): at each computational temperature we follow an EM-
like procedure to minimize the free energy; at the kth iteration
of we optimize over the function
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The modified forward and backward variables «(7) and 3(7)
are calculated by a modification of the standard iteratitive
procedure:
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B. Regularized Deterministic Annealing

We use a regularization approach to improve upon the
optimization results provided by the deterministic annealing
EM (DAEM) algorithm alone. Regularization terms, which are
added to the so-called @-function maximized during the M-
step of the EM algorithm, can be cast as statistical priors that
modify the HMM objective function. Priors used in previous
work have included Dirichlet-type priors used to prevent over-
training of discrete output distributions [12] and maximum
entropy priors used for pruning the HMM structure [13]. In
addition, statistical priors have been used more generally to
provide upper bounds on the objective function of models with
continuous output distributions. For instance, the conjugate
prior for Gaussian output distributions described by Ormoneit
and Tresp [14] wards against solutions with infinitely narrow
Gaussian outputs.

Our regularized DAEM method is designed to discourage
HMM local optima in which multiple HMM states have the
same output distributions. These solutions occur quite often
in practice, not only when the method is applied to HMMs
both also for other model types [15]. In order to address this
problem, we chose an improper prior on the HMM likelihood
based on the squared Euclidean distance between the means
of the state output distributions:
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where wg, > 0 is a weighting term. This prior rewards
solutions with widely separated output distributions. Recall
that for an HMM, the @Q-function is
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Since this is separable in 7, A, and B, we can divide it into
the sum of three functions: Q1 (), Q2(A), and Q3(B). From



our prior we derive the modified Q)-function with
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where m; = Y, lk)Ot/Zt 1 7% Note that for the
ease of subsequent manipulation and computatlon, we do
not properly account for the independence of the prior from
the hidden state variable. In theory, systems with highly
skewed populations of observations from each of the output
distributions may be misrepresented in this regularization
scheme. In practice, we have observed no evidence of any
serious consequence; nevertheless we keep in mind that the
regularized Q)-function (9) is only an approximation.

To derive the revised EM update rule we first take the vector
derivative of ()5 in the means:
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a D x D identity matrix. This system can be solved by any
standard linear method given the inverse covariances X7 *. In
order for the problem to remain concave, and thus have a

global maxima in the means, we require
way < 1% 1[]/2N. (13)

To find the maximum in the covariances, we take the
derivatives of (9) in the components of X ! and set them

equal to zero, which gives us
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This is a global maximum since the ()-function is concave
as a function of the covariances >;. To find the means
and covariances we need to solve equations (12) and (14)
simultaneously. This can be done by using the approximation
¥; = S;, where
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in equation (12) as an initial guess and then iterating be-
tween equations (12) and (14) until the solution converges.
In practice, it is usually sufficient merely to approximate 3;
as S; when calculating the means without any attempt at
iterative convergence whatsoever. This iterative rather than
direct maximization forces us to characterize the method as
a generalized EM algorithm rather than a pure EM approach.

III. MODE SEGMENTATION

The first and most straightforward application of hidden
Markov models is to perform mode segmentation of time
series. Given the fitted model parameters, we can determine the
individually most likely state assignments of the observation
sequence,

q = argmax(ry), t=1,....T
1<i<N

(16)

The resulting sequence of state assignments indicates the
modes of the system through time. As an example of this sort
of analysis, we present the results of fitting an HMM to a time
series collected by a GPS station in Claremont, California.

This time series consists of relative displacement mea-
surements in three dimensions (north-south, east-west, and
vertical) collected daily over about two years spanning 1998-
1999. In Figure 1 we show this time series, with observations
color coded according to the state assignments provided by
fitting a seven state HMM to the data.

This data set contains certain clear signals of deformation
processes; these include a vertical dip and rebound around
days 100-200 resulting from the pumping and subsequent
refilling of a local aquifer, as well as a sudden east-west jump
caused by the magnitude 7.1 Hector Mine earthquake in 1999.
We see that the fitting method has identified not only these
mode changes but a number of more subtle signals, including
periods of increased noise in the beginning and end of the
series.

This mode segmentation analysis tool has been integrated
into the QuakeSim web portal [16] and linked via web services
to both archived and streaming GPS data. In this environment,
analysis can be performed not only on daily integrated solution
data, as in the example above, but also on real-time position
information collected at 1Hz.
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Classification results for a seven-state HMM applied to GPS displacement data from Claremont, California. Automatically detected

mode changes include a period of aquifer pumping (blue) and a large jump caused by the Hector Mine earthquake (yellow to red transition).

IV. SENSOR NETWORK CHANGE DETECTION

In this section we extend the techniques used to analyze
data from a single sensor to the analysis of entire networks
or subnetworks. We present a case study in which we are
interested in detecting geophysical events with geographically
disperse signatures using GPS data, including not only earth-
quakes but also aseismic events linked to crustal block motion
or stress transfer between earthquake faults. These types of
events have been observed in a few instances [17]-[23], but
detections remain rare due to the subtlety of the signals. We
hope to observe evidence of these types of aseismic events in
the GPS data.

For this experiment we used daily displacement solutions
for all 127 available SCIGN stations in a 820 day window
beginning Jan 1st, 1998. When GPS displacement values for
a given station were not available on a particular day due to
signal dropout or incomplete installation, we assumed a zero
displacement measurement for that day. We note that since
actual measurements are almost never of zero displacement,
this in effect adds an additional “dropout” class to the data.
Our next step was to fit a separate hidden Markov model to
each of these GPS signals. Once these models were trained,
they provided us with the state sequences for each GPS time
series. We suspected that interesting geophysical events would
manifest themselves as changes in the signals across multiple
GPS stations, thus we looked for correlations in state changes
across the network.

Figure 2 shows the number of same-day state changes across
all stations using classifications given by six-state models.
There are a number of strong peaks indicating correlated state
changes; of note is the strong peak on day 652, which corre-
sponds to the Hector Mine earthquake. We observe that there
is an increasing trend in the average number of coincident
state transitions; this is because of the increasing number of
stations installed and activated during the observation period.
When we compare these network change correlations with the
seismic record, we find that the only large event during that

time period was the Hector Mine earthquake; other correlation
peaks are not associated with strong seismic events, and thus
indicate possible aseismc events.

V. SIGNAL SEARCH

By providing high-quality, reliable HMM fitting results, the
RDAEM method also allows us to perform time series search
operations. These operations allow a human investigator to
identify a signal of interest and search over a data base of time
series to find matches to that signal. This capability allows
the user to easily find and catalog multiple instances of an
unusual signal in a large volume of data on the basis of a
single human observation; a bootstrapping approach seems
particularly appropriate in such a scenario. If the database
supports annotation, new investigators can easily access the
observations of previous researchers about similar signals that
were previously observed.

Our approach to performing time series search was as
follows. In the first step, the user selects a particular time series
snippet, either from a stream or database, and an HMM is fit
to that snippet. Once the model was trained on the selected
data, it is then used to classify the selected observations into
sequence of discrete states as described in Section III. That
same HMM is then used to similarly classify time series in
the database. The state sequence pattern of the search snippet
is matched against all possible state sequence patterns of equal
length in the database, and a Hamming distance metric is used
to rank matches. The top results are then returned to the user.

An screenshot of this time series search procedure is shown
in Figure 3. In this example, the method is being applied to
sensor data collected from the International Space Station. A
strip chart displays various sensor values to the flight controller
(figure upper left), from which the flight controller can select
a signal of interest (in this case, a saw-toothed pattern in the
beta gimbal array motor current). Signal matches are shown
on the right.
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Coincident state changes for six-state HMMs trained on daily position solutions from each of 127 SCIGN GPS stations.
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A screenshot of a time series signal search application, implemented for use with sensor data from the International Space Station.

The flight controller selects a signal of interest from one of a number of sensors displayed in strip charts (left), to which is fit an HMM
model. The model is used to find matches in the database (right). Some results are off screen.

VI. CONCLUSIONS

We have presented a technology based on hidden Markov
models (HMMs) that provides a number of capabilities for the
analysis of sensor web time series data, including segmenta-
tion, detection of network-wide phenomena, and time series
signal search. These capabilities have been made possible
by use of the regularized deterministic annealing expectation
maximization (RDAEM) algorithm for HMM fitting. This
algorithm provides robust, reliable model fits even in the
absence of a priori information about the system.

This algorithm has been implemented and integrated into
both the QuakeSim web portal environment for analysis of

geophysics data and a Decision Support System for NASA
flight controllers. In the former case, an interactive GUI
enables exploratory data analysis via the mode segmentation
technology, and network change detection capability enables
detection of regional events, including not only earthquakes
but also atmospheric and aseismic events. In the latter case,
the signal search capability allows flight controllers to select
signals of ongoing events and recover records of similar
activity that occurred previously. This enables the quick as-
sessment of events based on previous experience as well as
rapid recovery of records of relevant corrective actions taken
by flight controllers in similar situations in the past.



We envision a wide variety of applications of this technol-
ogy, including analysis of seismic networks, ocean buoy data
analysis, analysis of image sequences via summary statistics
such as vegetation indices, and analysis of flight sensor data
from aircraft and spacecraft.
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