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Abstract 
 

We describe the use of model predictive control as 

an integrated framework for optimal resource 

management in an ocean monitoring and predictive 

sensor network. The technique is used to adapt the 

operation of all the sensor and communication 

resources of the network to changing events in the 

area being monitored. The optimal control output 

determines the sampling rates of static sensors, paths 

of underwater unmanned vehicles, and wireless 

communication parameters. The system operates on 

data obtained from a variety of sources including 

static sensors, unmanned underwater vehicles, and 

sensors attached to passing cruise ships. Our sensor 

web adaptive control solution was found to improve 

the accuracy of event modeling and prediction by 

50%.  This novel solution is directly applicable to a 

variety of sensor webs and paves the way for 

coordinating multiple ground and space assets for 

faster, better detection, tracking and characterization 

of earth and extra-terrestrial environments. 

 

 

1. Introduction

 

 

Coastal zones are dynamic regions, occurring at 

the interface of the terrestrial, oceanic and 

atmospheric domains and intersecting with large, 

growing human populations. Given this importance, 

there is a compelling need to detect, understand, and 
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predict climate (e.g., sea level rise) and event-scale 

(e.g., coastal storm surges, spills) variability. In order 

to achieve this goal, networks of sensors have been 

deployed in many coastal regions to continuously 

measure ocean conditions and transmit the data to 

researchers. Such systems are called ocean sensor 

networks or webs. 

Monitoring of the world’s oceans is important for 

a variety of environmental and economic reasons. 

Ocean monitoring becomes particularly important 

near densely populated regions such as the New Jersey 

Atlantic Ocean shoreline. In these situations, a 

predictive model of the ocean can provide warnings of 

dangerous water conditions, identify conditions that 

will affect water quality, and to aid economic activity 

such as calculating passageways for ships entering a 

busy harbor. However, hydrodynamic model 

predictions will differ from real-world conditions due 

to reasons such as approximations in the model 

formulations, and the limited resolution of sensor 

measurements that form the input to these models. In 

such cases, it is beneficial to assimilate a limited set of 

real-world sensor measurements to the model in order 

to increase the prediction accuracy of the ocean 

monitoring system. However, obtaining sensor 

measurements from a sensor network consumes 

resources such as energy and communication 

bandwidth. In the case of embedded sensors, these 

resources are likely to be limited. Thus, in order to 

achieve this assimilation efficiently it is necessary to 

efficiently manage the resources of the entire sensor 

network in response to dynamic events. 

In our technology efforts under Autonomous In-

situ Control and Resource Management in Distributed 

Heterogeneous Sensor Webs: CARDS, we developed a 

technique to improve the science return from 



deploying an ocean sensor web by adapting the system 

parameters that affect the utility of the sensor 

measurements (for instance, sampling rates of the 

sensors) and the rate of system resource utilization (for  

 instance, energy expenditure rates of sensors and 

data routes in wireless transmission) such that these 

two competing factors are optimized in such a way 

that events in the environment are monitored for 

extended periods (Figure 1). Our ocean sensor web 

control and resource management approach uses the 

established mathematical framework of model 

predictive control. We illustrate how our approach can 

improve the prediction accuracy of a coastal 

environment monitoring network that operates in the 

New York Harbor and extends into the New York 

Bight [1]. 

  

1.1 Ocean Sensor Web Autonomy and 

Relevance to NASA ESTO  
 

Ocean sensor webs provide the potential for an 

improved ability to effectively observe, understand, 

and predict variability and change in coastal marine 

ecosystems, contributing to improved scientific 

knowledge and decision-making and ultimately 

significant societal benefits, which is of primary 

interest to the NASA ESE and NASA ESTO. Towards 

fulfilling this need, the U.S. is developing the 

Integrated Ocean Observing System (IOOS), of which 

the NYHOPS is a key local/regional component. IOOS 

is the U.S. component of the Global Ocean Observing 

System (GOOS), to be a key part of the emerging 

Global Earth Observing System of Systems (GEOSS).    

While the IOOS is driving the implementation of 

much needed in-situ, ground based observing 

networks, the current deployed systems typically 

consist of uncoordinated fixed, mobile observing 

assets that generally operate independently of one 

another.    

CARDS will directly enable critical autonomous 

coordination capability for effective and accurate 

detection and prediction of the episodic, short-lived 

coastal events (e.g., storm surges, rip tides, 

spills/runoff) and characteristic of coastal regions, via 

resampling and retargeting of static and mobile 

(vessel) surface sensor assets.  

In terms of immediate, short-term benefits and 

relevance, improved detection of the onset of episodic 

events within the NYHOPS domain and the improved 

sampling of such events through CARDS will directly 

improve the well-being and safety of the NY/NJ 

coastal community and maritime interests.  

Specifically, improved assessments and predictions of 

storm surges, rip currents, harbor current anomalies 

and pollutant/hazard fate and transport will benefit 

local (county/state) and federal (FEMA) emergency 

management personnel, the U.S. Coast Guard, 

harbor/fleet operations (e.g., ferry service) and port 

security, lifeguards, fishermen, and recreational 

swimmers and boaters.  Improved warnings and other 

information will be instantly transmitted to local 

coastal officials and municipal lifeguard units through 

an automated text messaging/paging database 

currently utilized by NYHOPS to provide coastal flood 

warnings [HE05]. 

 

Figure 1:  Adaptive control and resource management of sensor web parameters and 

operations in response to events. 



In terms of long-term relevance and benefits, 

capabilities developed and lessons learned as part of 

the NYHOPS deployment could easily by transferred 

to other regions and coastal ocean observing systems 

as part of IOOS (nationally) and GOOS (globally).  

Adaptive targeting and sampling will enable 

improved, autonomous, and faster four-dimensional 

realization, analysis, understanding, and prediction of 

common coastal processes and phenomena, supporting 

improved understanding of the coastal ecosystem and 

carbon cycle as well as improved decision-making for 

maritime operations, hazard response, beach closures, 

etc. 

The ocean sensor web adaptation technology 

developed specifically addresses the NASA Earth 

Science Enterprise research questions of, “What are 

the consequences of climate and sea level changes 

and increased human activities on coastal regions”.  

It falls within the Carbon Cycle and Ecosystem and 

Climate Variability and Change Science Roadmaps, 

and also the Coastal Management priority area of 

NASA’s ESTO Applied Sciences Program.   As such, 

there is clear linkage and application for research 

communities as well as end-users such as managers, 

decision-makers, and policy makers.  Focused, 

intensive, and coordinated surface and sub-surface 

observations of coastal events or anomalies provide 

greater scientific understanding through real-time 

acquisition of synergistic biogeophysical data sets at 

relevant spatio-temporal scales, and in turn enable 

more accurate nowcasting and forecasting in support 

of coastal user needs.     As outlined in the NASA 

Strategic Plan 2006 (pg 39), sensor webs that enable 

autonomy and interaction of space and surface sensors 

is a top priority; the CARDS ocean sensor web 

adaptation technology enables such environmental 

characterization and prediction.   

    

Relevance to AIST Objectives 

 

In CARDS for Smart Sensing in AIST, we have 

designed and developed advanced information system 

technologies in sensor web event detection and 

adaptive control that satisfy the specific requirements: 

• Enable new observation measurements and 

information products for maritime data that may be 

currently unavailable;  

• Reduce response time to rapidly unfolding 

events such as storm surges, and other hazards 

(~spills) in the NY/NJ estuary; 

• Increase the accessibility and utility of data and 

information via real-time, autonomous model-based 

episodic event detection and forecast and distribution 

to the scientific and user (marine fisheries, US Coast 

Guard, port security) communities in the NY/NY 

Estuary to enable/support improved benefits for 

research, hazard mitigation and other societal benefits; 

• Reduce the cost, size, and development time for 

Earth science ground-based information systems 

(specifically NYHOPS) via autonomous resource 

management of energy/power that will increase system 

lifetime and reduce the need for manual oversight 

(with applicability to space systems in the future); 

• Increase the scientific value (quantity and 

quality) of maritime observations by enabling real-

time analysis of coincident remote satellite sensors 

from in-situ detected events; 

• Produce IT components that can ultimately be 

integrated, infused and demonstrated on functional 

ocean sensor web systems such as the NYHOPS sensor 

web. 

 

2. Related Work 
 

Resource allocation is the assignment of a system 

resource toward the fulfillment of a task that generates 

a certain amount of utility. Usually, the set of 

resources is limited, causing contention among the 

tasks that can be completed at a given time. In the 

remote monitoring from space domain, the resources 

may be the set of sensors that are present on a satellite, 

the tasks may represent locations on the earth that are 

to be sensed, and the utility of sensing particular 

locations represents the expected science return [2]. In 

the remote sensing domain, the set of resources and 

tasks are often too large to be handled by general 

planning algorithms. In this case, specialized planning 

algorithms are used that take into account the specific 

properties of large environmental models and datasets 

[3].  

In applications that utilize sensor networks, the 

set of tasks is not known in advance, but rather tasks 

are generated by environmental processes that cannot 

be predicted completely (online resource allocation). 

Moreover, resource allocation in these applications 

will have to be performed in real-time which preclude 

the possibility of executing optimal task allocation 

algorithms if they take too long to complete. Iterative 

planning is a process where a pre-computed plan is 

refined upon receiving new tasks. This approach is 

used in the allocation of satellite resources to a set of 

desired earth observations [2]. The planner in the 

system is ASPEN, which performs local search using a 

combination of heuristics [4]. CASPER is an online 



planner that is embedded in an orbiting satellite [5]. 

This planner is model-based. It takes as input science 

goals (generated by an on-board event detector) and 

generates a plan that is likely to lead to observations of 

interesting events.  

 

3. The New York Harbor Observing 

and Prediction Ocean Sensor Network 

System (NYHOPS) 
 

NYHOPS is comprised of a network of sensors and 

a model of the ocean environment  to monitor and 

predict coastal and ocean conditions in the densely 

populated regions of the Hudson-Raritan Estuary and 

the New Jersey Atlantic Ocean shoreline [1]. The 

region modeled by the system is shown in Figure 2. 

The readings from the sensors are provided to the 

model of the environment, the ECOMSED/POM 

model [6]. ECOMSED is a hydrodynamic model that 

describes the physical properties of the entire water 

mass in the NY/NJ harbor area using a set of 

differential equations (representing conservation of 

mass and momentum, and heat transfer). The inputs to 

the model are ocean elevation (which depends on 

tides, offshore weather, cross-shelf elevation change), 

salinity and temperature at the open and coastal 

boundary of the model, and weather (air temperature, 

humidity, pressure, wind speed, solar radiation, cloud 

cover obtained from NOAA weather stations and 

forecasts). The model outputs are elevation, salinity, 

temperature, and water velocity. The model 

predictions are calculated over a high resolution 

orthogonal but curvilinear three-dimensional grid. The 

resolution is highest in the inland water bodies and 

decreases toward the open ocean. The model is run 

daily and the predictions (along with hindcasts) are 

displayed as images on a webpage. 

Boundary conditions for the model are available 

from ground-based sensors and weather from NOAA. 

In addition, unmanned underwater vehicles (UUVs) 

may be deployed to obtain additional information. 

Sensors may also be attached to passing cruise ships to 

collect oceanographic parameters along the paths of 

these ships. 

In the NYHOPS system, sensors that are deployed 

along the coast or in the NY/NJ harbor have to 

transmit their measurements to a central data 

acquisition/control computer. The distant location of 

the sensors with respect to this central computer 

requires that remote dataloggers act as an 

intermediate relay station. A datalogger (which is a 

PC) compresses data files, establishes a connection to 

the Internet via a local ISP, and pushes the data to the 

data acquisition server. The data transmission to the 

remote datalogger is through a line-of-sight serial 

radio modem system. A sensor can establish a 1200 

baud, two-way simplex communication link with any 

of the remote dataloggers. Mobile sensors utilize serial 

cellular modems for data transmission to the remote 

logger. Currently, the data collection schedule is 

adjusted based on the power source and sampling 

requirements of the platform. Sites that are on the 

power grid can collect and transmit data at a high 

frequency. Typical sampling schedules consist of the 

measurement of up to 20 parameters that are retrieved 

every 5 minutes. Sensors that do not have access to the 

power grid measure an average of 10 parameters every 

15 minutes and data is retrieved once every hour. 

 

 
Figure 2: Output area of the ECOMSED 

hydrodynamic model. 

 

4. Improving model prediction 

accuracy by incorporating real-time sensor 

measurements 
 

The model predictions will not exactly match real-

world conditions because of a variety of reasons. These 

include unmodeled phenomena in the ECOMSED 

model, approximations in the layout of the three-

dimensional grid, the finite resolution of the grid, and 

errors in the sensor measurements that form the 

boundary conditions. The CARDS project describes a 

method by which real-time sensor measurements can 

be incorporated into the model outputs so as to 

increase the accuracy of the NYHOPS predictions. 

The resolution of measurements from physical 

sensors is expected to be much lower than that of the 

hydrodynamic model. We developed a nudging 

assimilation algorithm that integrates point data into 



the gridded predictions. The algorithm works by 

identifying the closest model grid cell to a given 

observation location and replacing the forecast value 

with the observed value. We then solve the Laplace 

equation to “spread” the influence of the observation 

to neighboring cells in the grid by proportionally 

smaller amounts. 

Physical sensors that comprise part of an embedded 

sensing network are limited by energy and 

communication bandwidth resources. Operating the 

sensors at their maximum sampling rates while 

transmitting the resulting data across the network is 

likely to exceed these energy and bandwidth limits. 

Thus, it is desirable to implement a means of 

regulating the operation of all the sensors (such as 

sampling rates) in the network so as to maximize the 

expected utility of incorporating the sensor data into 

the system output while still ensuring that the physical 

limitations of the sensor network (such as energy 

reserves and bandwidth) are not exceeded. 

 

4.1. Model Predictive Control for Resource 

Management in SpatioTemporal Ocean Sensor 

Webs 
 

We utilize a general mathematical control 

framework called Model Predictive Control (MPC) for 

regulating the operation of the sensors in the sensor 

network. MPC is an established technique for 

controlling complex continuous systems. MPC 

assumes that a model that describes how the system 

state responds to control inputs is available. At each 

control iteration, the values of the controlled inputs 

are obtained by solving an optimization problem that 

utilizes this state model. Limits on the range of the 

control, and other domain-specific requirements are 

specified naturally as equality and inequality 

constraints in the optimization step. This flexibility in 

problem specification and the ability to derive optimal 

control are some of the chief advantages of this control 

technique. Successful applications of MPC include 

chemical process control and resource management in 

the battlefield [7-10].  

We designed a MPC controller that takes into 

account the utility of operating the sensors and the 

limitations of the NYHOPS network. Optimal controls 

are generated for (outputs of the MPC controller): 

1. Sampling rates of fixed sensors 

2. Positions of mobile sensors such as UUVs 

3. Assignment of sensors to dataloggers 

The constraints in the optimization problem 

represent: 

1. Maximum sensor sampling rates 

2. Physical limitations of the UUVs (such as 

speed, and energy capacity) 

3. Bandwidth of the wireless communication 

network 

 
Figure 3: Locations of simulated 

dataloggers. 

 

 

 
Figure 4: Top:  Observations (at high 

spatial resolution) at one time instant. Bottom: 

Locations of detected events. 



A single objective function cannot model all the 

system components that are to be optimized. Hence, 

the optimal control is obtained as the solution to a 

series of objective functions (multi-objective 

optimization): 

1. Maximize the utility of measurements from 

fixed sensors 

2. Maximize the utility of measurements from 

mobile sensors 

3. Minimize the energy expended in moving 

mobile sensors 

4. Minimize the energy expended in wireless 

data transmission 

We have derived a statistical model to describe 

the utility of obtaining measurements from spatially 

separated sensors at different sampling rates [11]. This 

statistical model forms the basis for the MPC objective 

functions. 

 

5. Results 
 

True ground truth sensor observations are not 

available at the required resolutions throughout the 

modeled area. Hence we studied the end-to-end 

performance of the CARDS approach to improving 

model prediction accuracy in simulation. Sensor data 

was simulated by subsampling from high resolution 

ECOMSED model output (NYHOPS forecasts and 

hindcasts). The base model predictions were obtained 

by intentionally “compromising” the ECOMSED 

model, i.e., certain model parameters were set to 

historic values instead of real-time observations in 

order to increase the divergence from true 

observations. The locations of local universities, and a 

few coastal spots were chosen as positions of 

dataloggers for this simulation study (Figure 3). A few 

of the dataloggers were also situated in the open ocean 

in order to keep the maximum data transmission 

distance between sensors and dataloggers within 

practical radio range. We assumed that UUVs could 

navigate freely in the Lower New York Bay and along 

the New Jersey coast. The paths of cruise ships that 

regularly ply in the area was available and we 

simulated sensor measurements along these paths 

(Figure 5). 

  

5.1. Monitoring the evolution of a 

freshwater plume 
 

During the week of April 15, 2007 unusually 

heavy rainfall caused a freshwater flooding event in 

the New York harbor and surrounding ocean (“Tax 

 
Figure 5: Paths of cruise ships and 

navigable areas of UUVs (shaded regions). 

 

 

 
Figure 6: Top: Location of sensors. The 

size of the dots is proportional to the 

sampling rates. Bottom: Decrease in RMS 

error when using adaptive sampling as 

compared to uniform sampling.  

 



day flood”). This caused a freshwater plume to form in 

the New York Bay and spread out into the open ocean. 

Such events may carry pathogens from overwhelmed 

treatment plants into the coastal ocean. For this study, 

we set the flow rates of freshwater into the ocean in 

the ECOMSED model to their historic median rates. 

This compromised ECOMSED model did not predict 

the freshwater plume but the simulated sensors 

observed the plume (as these were obtained by 

subsampling the uncompromised ECOMSED model 

output from the NYHOPS forecasts and hindcasts). 

We implemented an event detection algorithm to 

determine those (time varying) regions in the modeled 

area that will benefit the most from assimilation of 

sensor observations in indentifying the freshwater 

plume. To demarcate the extent of the plume we used 

the difference in surface salinity from historic 

expected levels. Sensors observing salinity values that 

were beyond one standard deviation from the historic 

mean were immediately designated to be in the critical 

region (Figure 4). 

The locations of the simulated sensors are shown 

in Figure 6. The size of each dot indicates that 

sensor’s optimal sampling rate. The decrease in root 

mean square error (RMSE) using our adaptive 

sampling approach is compared with that achieved 

with uniform sampling in Figure 6. The 

uncompromised ECOMSED predictions which 

correctly modeled the plume served as ground truth. 

The results of assimilating surface salinity are 

shown in Figure 7 along with the original 

compromised model prediction and the simulated 

ground truth values. The surface salinity after 

assimilation matches the ground truth significantly 

(the RMSE values are shown in Figure 8). 

The effect of assimilating sensor data from the 

available UUVs (whose paths are optimized by our 

MPC controller) and the passing cruise ships is shown 

in Figure 8. The “No Nudging” case shows the RMS 

error of the compromised ECOMSED prediction. The 

other cases include the different available sensor 

observations using the nudging algorithm. As 

expected, increasing the number of sensor 

observations that are assimilated decreases the RMSE. 

However, the relative benefit of using a mobile asset 

depends on its location. For instance, one of the ships 

moves in the Upper New York Bay, an area where 

there are few sensors. Hence, assimilating data from 

this ship leads to a large decrease in RMSE. 

 

6. Future Work 
 

 The sensor network adaptation technique described 

in this work can be generalized to respond to sensor 

observations from a variety of sensors and to calculate 

optimal control for multiple entities. In particular, 

sensor observations can be obtained from remote 

sensing satellites. The MPC controller can also be 

used to calculate as part of its output locations in the 

 

 

 

Figure 7: Top: Ground truth surface 

salinity. Middle: Compromised model output. 

Bottom: Surface salinity after assimilation. 

 



environment which are expected to provide maximum 

science return. This can then be used to autonomously  

generate observation tasks for satellites such as the 

EO-1. 

 

 

 7. Conclusions 
 

The paper demonstrated a framework for resource 

management in ocean observation networks. The 

technique is general enough that it can produce 

control for static sensors, optimal paths of mobile 

sensors, and wireless transfer of sensor data. The 

control technique adapts these sensor and 

communication resources to changes in the ocean 

environment. The changes in the environment can be 

calculated from a variety of data sources. We 

demonstrated how static sensor measurements, data 

from UUVs and from passing ships can be assimilated 

into the outputs of a hydrodynamic ocean model to 

increase the prediction accuracy of the system 

forecasts. The CARDS approach can be generalized to 

accept data input from remote sensing satellites and to 

generate observation tasks for satellites.
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Figure 8: Decrease in RMS error with 

increasing number of UUVs and cruise ships 

(named Explorer, Pioneer, and Osprey). 

 


