Antimone Barrier Infrared Detector Focal Plane Arrays for Earth Science Applications

PI: David Ting *(Jet Propulsion Laboratory)*

Team Members:
Anita Fisher, Sarath D. Gunapala, Cory J. Hill, Sam A. Keo, Arezou Khoshakhlagh, Brian J. Pepper, Sir B. Rafol, Alexander Soibel

NASA Jet Propulsion Laboratory, California Institute of Technology

Steven Allen, Darrel Endres, Robert Jones, Yajun Wei, Diane Beamer

L3 Cincinnati Electronics

Program: SLI-T 15

Government sponsorship acknowledged
Motivation

- NASA successfully deployed long-wavelength **QWIP** (quantum well infrared photodetector) FPAs
 - LandSat-8 TIRS (Thermal Infrared Sensor) – Multispectral IR Imager
 - HyTES (Hyperspectral Thermal Emission Spectrometer) – Hyperspectral IR Imager
 - https://hytes.jpl.nasa.gov/

- QWIP FPA advantages
 - Made from robust III-V semiconductors, providing FPA “-ility” advantages
 - High operability, large-format capability, producibility, temporal stability, spatial uniformity, affordability
 - **Temporal stability** (low 1/f noise). No need for frequent system recalibration - **More science return**.

- QWIP FPA challenges
 - Higher dark current due to larger generation-recombination (G-R) rate; photoconductor architecture
 - Low conversion QE. No intrinsic normal-incidence absorption; sub-unity photoconductive gain (~0.1)
 - Requires more cooling to control thermal dark current to achieve needed sensitivity
 - Low operating temperature: TIRS ~ 43 K; HyTES ~ 40 K (both with ~12 µm response)

Can we achieve higher operating temperature to reduced cooler demand for lower size, weight, and power (SWaP), and still retain the FPA ‘ility’ advantages?
Advances in III-V Semiconductor IR Photodetectors

Antimonide infrared absorbers

- InGaAsSb alloy: 2 - 4 µm cutoff wavelength
- Type-II superlattices (artificial IR material)
 - Continuously adjustable bandgap provides cutoff wavelength coverage from 2 µm to >15 µm
 - Tunneling and Auger dark current suppression
- All can be grown on GaSb substrates
 - 2”, 3”, 4” diameter format commercially available.

Unipolar barrier detector architecture

- Unipolar barrier detector architecture
 - Unipolar Barriers block electrons but not holes (or vice versa)
 - Examples: nBn, XBn, XBp, CBIRD
- Can suppress G-R and surface leakage dark current, w/o impeding photocurrent
- Higher operating temperature / sensitivity

The confluence of these two developments has led to a new generation of versatile, cost-effective, high-performance infrared detectors and focal plane arrays based on robust III-V semiconductors.
JPL Type-II Superlattice Barrier IR Detector (T2SL-BIRD)

- Antimonide T2SL high operating temperature barrier infrared detector (**HOT-BIRD**)
 - Customized cutoff wavelength to match InSb
 - Excellent FPA imaging performance at 160K
 - Comparison with InSb FPA
 - Planar InSb (ion implant) ~ 80K. MBE epi InSb ~ 95-100K (can image up to 110-120K). **HOT-BIRD FPA operates at much higher T.**
 - InSb FPA is a major incumbent technology; leads all photodetector FPA market in volume, with >50% market share (units sold) in 2018.

- Low dark-current MWIR FPA for spectral imaging
 - For NASA CubeSat Infrared Atmospheric Sounder (CIRAS)
 - Achieved low dark current of $J_{dark}(111 \text{ K})=1.8 \times 10^{-8} \text{ A/cm}^2$ required for spectral imaging application

JPL antimonide alloy and superlattice BIRD FPA demonstrated high uniformity & operability, with cutoff wavelengths covering SWIR to VLWIR.

*Antimonide bulk alloy/T2SL barrier IR detectors λ_{Cutoff}

All can be grown lattice-matched to, or pseudomorphically on, GaSb substrates

| Wavelength λ | SWIR | MWIR | LWIR | VLWIR |...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 [\mu m]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Very) Long Wavelength Infrared FPA for Land Imaging

- Developing type-II superlattice (T2SL) barrier infrared detector (BIRD) FPAs to meet NASA Sustainable Land Imaging (SLI) interests in thermal IR bands in the 8 – 12 µm range.

- Initial Round FPA: $\lambda_{c\text{utoff}} \sim 11$ µm
 - SBF-193 ROIC, 640x512, 24 µm pitch
 - FPA with $\lambda_{c\text{utoff}} \sim 11.2$ µm T2SL absorber material
 - $J_{\text{dark}}(60K) \sim 7 \times 10^{-5}$ A/cm²; QE $\sim 37\%$, no A/R coating.
 - FPA operability $\sim 99.4\%$

- Second Round FPA: $\lambda_{c\text{utoff}} > 12$ µm
 - Longer cutoff; improved dark current; SBF-193 ROIC
 - FPA with $\lambda_{c\text{utoff}} \sim 12.6$ µm T2SL absorber material
 - $J_{\text{dark}}(65K) \sim 3 \times 10^{-5}$ A/cm²; QE $\sim 27\%$, no A/R coating.
 - FPA operability $\sim 99.98\%$
 - Estimated 20K operating temperature advantage over QWIP FPA. Reduce cooling demand for favorable SWaP.

Long wavelength type-II superlattice (T2SL) barrier infrared detector (BIRD) FPAs can provide an estimated 20 K operating temperature advantage over existing QWIP FPAs.
Long-wavelength T2SL BIRD for “Silicon Sandwich” FPA

- L3 Cincinnati Electronics patented “silicon sandwich” process favorable for large-format FPA
- JPL/L3 collaboration to implement long-wavelength T2SL barrier IR detector silicon-sandwich FPA
- Detector material wafers designed, grown, and characterized at JPL
 - L3 process requires bonding III-V semiconductor wafer to silicon wafer first (transfer detector layer to silicon wafer)
 - Stringent wafer-bow requirements for the detector wafer
 - Material/wafer characterization: very good X-ray diffraction, surface roughness, wafer bow
 - Four 4-inch diameter wafers sent to L-3 for FPA fabrication
- A sister wafer used for detector fabrication/characterization at JPL
 - Demonstrated good LWIR detector characteristics
 - At 60 K, $\lambda_{\text{cutoff}} = 11.6 \, \mu\text{m}$; QE ~30% at 8.6 μm (no A/R coating); dark current density ~ $6 \times 10^{-6} \, \text{A/cm}^2$

Wafer bow measurement

Surface roughness

Spectral QE

Dark Current

Peak to valley = 15.6 μm (4-inch diameter wafer)

RMS roughness = 1.12 Å
LW T2SL BIRD “Silicon Sandwich” FPA Demonstration

Conventional FPA
- Fabricate detector arrays on III-V semiconductor detector wafer
- Hybridize detector array to silicon ROIC
- Remove III-V substrate to avoid thermal mismatch with silicon ROIC

L3 “Silicon Sandwich” FPA
- III-V detector wafer bonded to silicon wafer
- Remove III-V substrate (leaving detector layer on silicon)
- Fabricate detector arrays on silicon wafer
- Hybridize detector array to silicon ROIC.

- Successfully demonstrated “Silicon Sandwich” FPA with LW T2SL BIRD
 - L3 fabricated FPAs using FLIR ISC-1308 ROIC (1280×1024, 12 µm pitch)
 - Dark current density: $J_{\text{dark}}(69.4K) = 1.9 \times 10^{-5} \text{ A/cm}^2$; QE=29% (8-10 µm)
 - NEDT = 29.2 mK at 69.4K (27.5 °C background, F/2 optics, 7.7-10 µm filter)
 - Operability: 99.5%
- An integrated dewar cooler assembly (IDCA) is being built at L3

The successful demonstration of silicon sandwich FPA paves the way to multi-megapixel long-wavelength T2SL BIRD FPAs for high-resolution applications.
References /Acknowledgement

TIRS QWIP

epi-InSb FPA
- “Recent progress in InSb based quantum detectors in Israel”, P. Klipstein et al., Infrared Physics & Technology 59 (2013) 172–181

Unipolar barrier IR detectors – nBn, XBn, CBIRD

Type-II superlattice barrier IR detectors

L3 silicon-on-silicon FPA
- “Indium antimonide large-format detector arrays”, Mike Davis and Mark Greiner, Optical Engineering 50(6), 061016 (2011)

Acknowledgement: The authors wish to thank Sachi Babu and Eastwood Im. A part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D004). Government sponsorship acknowledged.