D-SHIELD: Distributed Spacecraft with Heuristic Intelligence to Enable Logistical Decisions

Presenter and PI: Sreeja Nag

Team Members: Mahta Moghaddam2, Daniel Selva3, Jeremy Frank1, Vinay Ravindra1,4, Richard Levinson1,5, Amir Azemati2, Alan Aguilar3, Alan Li1,4, Ruzbeh Akbar6

Program: AIST-18
Tech: Agile Spacecraft Constellations Maximizing Coverage and Revisit

- Small Sat constellation + Full-body reorientation agility + Ground scheduling autonomy = More Coverage, for any given number of satellites in any given orbits
- Using Landsat as first case study w/ a 14 day revisit. Daily revisit needs ~15 satellites or 4 satellites with triple the FOV.
- Assuming a 20 kg satellite platform for option of agile pointing
- Scheduling algorithm allows 2 sat constellation over 12 hours to observe 2.5x compared to the fixed pointing approach. 1.5x with a 4-sat constellation
- Extendable to monitoring applications (e.g. coral reefs)

If longest latency < shortest gap, for pairs with the same priority => each satellite can be considered fully updated with information from all others, i.e. perfect consensus is possible, in spite of distributed decisions made on a disjoint graph.
Tech: Add science-in-the loop as lightweight Simulator

Example Use Case: Urban Flood Monitoring

5 cities assumed flooded simultaneously over 6 hours

Value Function Snapshot

Appropriately low latency in information exchange enables the onboard scheduler to observe ~7% more flood magnitude than a ground-based implementation.

Both onboard and offline versions performed ~98% better than constellations without agility.

Data: Dartmouth Flood Observatory (Brakenridge 2012)
D-SHIELD Solution:

ANalyzer (Input)

Inputs
- Constellation orbits
- Ground network specs
- Instrument specs (multiple per satellite, heterogeneous possible)
- Satellite specs
- User case requirements

Legend
- Measurements
- Uni-directional Data/Information flow
- Bi-directional Data/Information flow
- Connector

Science Simulator

Optimizer

Value as f(grid point, time, instrument), Model parameters as f(obs)

Scheduler

Schedule = (grid point/satellite, time, instrument/radio)

ANalyzer (Output)

- User's DSM (propagated inputs + OM)
- Natural Phenomena (variation of Nature Run)
- LOG Obs, Value

Outputs
- Overall Performance/Value
- Trade-Offs b/w Onboard and Ground Execution

Use Case: Soil Moisture Monitoring for Uncertainty Minimization

- Use soil moisture measurements from SoilSCAPE, add noise to it to find the minimum acceptable sigmaNEZ by small sat.
- Size a representative constellation with 3 types of instruments.
- Schedule the constellation to make multipayload observations to reduce soil moisture uncertainty.
- Science simulator: passive microwave, hydrologic land-surface model, data assimilator across third party sources – spaceborne (e.g. Sentinel-1, SMAP), airborne (e.g. P-band AirMOSS and L-band UAVSAR) or ground based sensors (e.g. SoilSCAPE) to compute value.

SoilSCAPE site in Walnut Gulch, AZ
www.ars.usda.gov
Mission concept down-selection

- Consider mission concepts based on heterogeneous constellations carrying combinations of L-band/P-band radars, radiometers, and reflectometers of different sizes in different orbits.
- Use VASSAR to evaluate mission concepts [2]
 - Estimate science/societal benefit by calculating capabilities and performance based on knowledge base and comparing against WMO requirements for soil moisture products.
 - Estimate lifecycle cost using spacecraft sizing algorithm and cost estimating relationships
- Use ESTO-funded TAT-C ML TSE algorithms to search over space of possible concepts [1]

Tech Details: Orbits and Instruments

- Work in tandem to produce set of observation opportunities and communication contact opportunities.
- Avail as standalone python packages.
Tech Details: Orbits

OrbitPy Package --

• Simple analytical orbital dynamics model with consideration of only J2 perturbations.

• Coverage calcs
 • Point-Grid method: Discretize region by set of grid-points and calculate the times at which the satellite “can potentially observe” the grid-points (support conical FOR and rectangular FOR).
 • Pointing options method: Discretize maneuverability of an agile satellite by set of pointing-options (eg: roll: [-10, 0, 10] degs) and calculate locations “covered” over the entire mission period.

• Communication contact opps
 • Line-of-Sight (LOS) calculation between entities of interest (satellites, ground-stations). Availability of LOS (with elevation constraint for GSs) => comm opportunity

Coverage calculations using the point-grid method
Tech Details: Instruments

InstruPy Package --

- Simple observation metric model considering observation geometry and instrument specs.
- Current suite of instruments with metrics:
 - Basic: Range, Incidence angle, Solar elevation angle
 - Passive-Optical: SNR, NEDT, Dynamic range, pixel resolutions
 - SAR: Sigma NEZ, Incidence angle, pixel resolutions
- Calculation of sensor FOR given the sensors/satellites maneuverability and the sensor FOV

Field-Of-Regard (FOR) calculation from a rectangular FOV and roll only maneuverability.
Tech Details: Spacecraft sizing

• Adapt existing spacecraft sizing algorithm [1] that estimates mass/power/size of each spacecraft based on payload+orbit characteristics.
• Combination of first principles calculations, empirical mass fractions, and expert-based complexity penalties.
• Informs instrument and satellite sizing trades.
• Informs operational constraints for the planner (e.g., instrument power, duty cycle).

\[\Delta V = \Delta V_{\text{inj}} + \Delta V_{\text{drag}} + \Delta V_{\text{ACS}} + \Delta V_{\text{des-orbit}} \]
Injection on engine Isp1
Drag, ADCS, deorbit on engine Isp2
Assume 3-Axis stabilized
Slewing requirements
Disturbance torque = Tgg + Tsp + Tad + Tmag
Mass = att ctrl + att determination

Work in Progress

• D-SHIELD Optimizer is protoyped on greedy path selection using dynamic programming (DP). Currently developing a modular, fast optimization approach that can handle the newly added complex aspects of payload operations and guarantee solutions in real time for operational use in global missions, scalable to scores of assets.

• Work ongoing to maturing the ACS, DTN module and building the ground, power, data modules.

• D-SHIELD Science Simulator to be based on an OSSE developed for a soil moisture relevancy scenario.

• After sizing is finalized, will build the spatio-temporal value model (OSSE+Instruments) and the D-SHIELD Analyzer.
Questions?

Sreeja.Nag@nasa.gov
SreejaNag@alum.mit.edu
Back Up Slides
Tech: Agile Spacecraft Constellations
Maximizing Coverage and Revisit

Over 12 hours of planning horizon using 2 satellites, 180 deg apart in the same plane:

- Using our proposed DP algorithm
- Using a fixed Landsat sensor, as is

Landsat images covered in 12 hours, by 2 sats pointed via the dynamic programming algorithm, in a single plane

Landsat images covered in 12 hours, by 2 sats always pointing nadir, in a single plane

Adding onboard autonomy to flight software + inter-sat communication to the constellation can improve science-driven responsiveness?
Onboard/Ground Scheduler

Information Flow between Scheduler Modules:

- Received Bundles (S, Ω, GP, i)
- Comm specs (C), Protocol (s), Contact Plan (K=f(S))
- Satellite ACS characteristics (X) + GP, S
- Bundle delivery latency (L) per satellite pair, per observed GP
- Bundle traffic generated (N)
- Scheduling Optimization (Dynamic Programming, validated with Mixed Integer Programming)

Ground Points (GP), Field of Regard (FOR), Current Sat States (S)

Orbital Mechanics

Access times (A) per satellite, GP, off-nadir angle

Attitude Control

Data bundle priority (BP), Inter-sat distances

Prev GPs seen

Power, Slewing times per satellite (Î), Satellite-Ground pairs (s-gp_i,s-gp_j)

Communication

Bundle Broadcast (i, GP, Ω, S)

Schedule of pointing commands (Ω=path_sat[gp_i,t_i])

Value i per GP, Spatial Υ, Temporal Υ
MIP applied to Downlink Scheduling

- S1 collects high priority data from target p1 from tick 1 through tick 3.
- After tick 1, S1 begins downloading high priority data to R1 until it empties its bucket of high priority data at tick 4, then S1 downloads low priority data on ticks 5 & 6.
- S1 begins collecting high priority data on tick 6, so resumes high priority download at tick 7 until the end of S1’s download window to R1 at tick 7.
- Receiver R2 is being used by Sat S2 for ticks 6-9, so S1 must slew to R3 during tick 8 and then download it’s remaining 2 units of high priority data to R3 on ticks 9 and 10, then resumes downloading low priority data. R3 then slews to S2 on tick 14 and S2 begins downloading high priority data to R3 on tick 15.