Predicting What We Breathe: Machine Learning to Understand Urban Air Quality

Presenter: Jeanne Holm
PI: Jeanne Holm
Team Members: Dawn Comer, Anthony Lyons, Irene Burga, Aaron Gross @ City of Los Angeles; Mohammad Pourmahayoun @ Cal State LA; Christa Hasenkopf @ OpenAQ; Ian Brosnan and Mike Little @ NASA
Program: AIST-18
Problem to Solve

• Inform policies to improve health outcomes in L.A.
• Create an actionable global air quality index
• Increase accessibility and use of space data by using machine learning to help cities predict air quality in ways that will improve human health
• Provide tools and algorithms to future missions (such as MAIA) for rapid ground truth, conduct diverse data fusion, and support rapid use of mission data
• Current approaches lack
 • City-to-city collaboration on effective AQ control strategies
 • Accurate predictive capabilities
 • Localized urban scale data

Characterize, understand, and improve the quality of air in urban areas across the planet
Solution

1. Create a model for cities to integrate air quality data from ground and space-based measurements.
2. Apply machine learning to large datasets to predict air quality and relate to on-the-ground interventions and activities.
3. Improve decision making for local governments.
Structure for Machine Learning Models

[Ref: P. Muthukumar, E. Cocom, J. Holm, D. Comer, A. Lyons, I. Burga, Ch. Hasenkopf, and M. Pourhomayoun, "Real-Time Spatiotemporal Air Pollution Prediction with Deep Convolutional LSTM through Satellite Image Analysis," The 16th Int. Conference on Data Science (ICDATA'20), 2020.]
Machine Learning Models

Deep Neural Networks:

- Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM): For the **temporal** correlation in the data
- Convolutional Neural Network (CNN): For the **spatial** correlation in the data
- Convolutional RNN/LSTM: For the **spatiotemporal** correlation in the data
Sample Ground-Based Data

AQMIS Dataset (www.arb.ca.gov)
- PM 2.5
- 60,000 data samples
- Collected from 8 sensors
- On an hourly basis
- One year duration (1/1 to 12/31/2019)
- California Air Resources Board data

Deep Neural Network
- Several convolutional and recurrent layers
- 10 months for training
- 2 months for testing
Considering Temporal and Spatial Patterns in the Data

Temporal Correlation:

<table>
<thead>
<tr>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
<th>tN</th>
</tr>
</thead>
</table>

Spatial Correlation:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>Lancaster</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Santa Clarita</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reseda</td>
<td>North Hollywood</td>
<td>X</td>
<td>X</td>
<td>Glendora</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>LA City Hall</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Long Beach 2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Long Beach 1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
10-Hour Prediction of PM 2.5

Prediction in 40x40 Grid

Ground Truth in 40x40 Grid
10-Hour Prediction of NO2

Prediction in 40x40 Grid

Ground Truth in 40x40 Grid
Next Steps

• Continue evolution of model, algorithms, and validation
• Identify and integrate local data (health, polluters, traffic, roads, ports) from IOT and in-situ sensors
• Identify gaps in coverage
• Engage citizen scientists (libraries, SafeCast, SmartAirLA, and more) and community partners for environmental justice for awareness and support
• Share findings via smart city air quality intervention and toolkit (C40 cities, U.N. Sustainable Development Goal Network, Climate Mayors, etc.) and identify sister cities
Opportunities for Collaboration

• Data source sharing via OpenAQ
• Machine learning models via Github
• City partners for results and lessons through C40 Global Platform
• Workshops at NASA ESTO Science Forum, AGU, IAC, and elsewhere

Jeanne.Holm@lacity.org
@JeanneHolm
Partners

• Public
 • City of Los Angeles
 • NASA/JPL
 • Southern California Air Quality Management District
 • SafeCast

• Private
 • OpenAQ
 • SmartAirLA

• Academic
 • California State University, Los Angeles
 • LA Data Science Federation

• Organizations
 • Mayor Garcetti leads the C40 Cities
 • Climate Mayors