D-SHIELD: Distributed Spacecraft with Heuristic Intelligence to Enable Logistical Decisions

Sreeja Nag, Mahta Moghaddam, Daniel Selva, Jeremy Frank

1NASA Ames Research Center and BAER Institute, Moffet Field, CA 94035
2University of Southern California, Los Angeles, CA 90089
3Texas A&M University, College Station, TX 77843
4NASA Ames Research Center, Moffet Field, CA 94035

February 2020
D-SHIELD + Soil Moisture Monitoring for Uncertainty Minimization

Product: Suite of scalable software tools that helps schedule payload operations of a large constellation, with multiple payloads per and across spacecraft, such that the collection of observational data and their downlink, results in maximum science value for a selected use case.

Project Technologies

Basic modules
+ Payload module
+ Ground Module
+ Power/Data module
+ New Science Simulator
+ New Scheduler

Ground Points (GP), Field of Regard (FOR), Current Sat States (S)

Access times (A) per satellite, GP, off-nadir angle

Ground Points (GP), Field of Regard (FOR), Current Sat States (S)

Data bundle priority (BP), Inter-sat distances

Prev GPs seen

Power, Slewing times per satellite (\(\dot{J} \)), Satellite-Ground pairs (s-gp, s-gp)

Bundle delivery latency (L) per satellite pair, per observed GP

Bundle traffic generated (N)

Value i per GP, Spatial \(T_i \), Temporal \(T_i \)

Schedule of pointing commands (\(\Omega = \text{path}_{\text{sat}}[gp, t_i] \))

Schedule of pointing commands (\(\Omega = \text{path}_{\text{sat}}[gp, t_i] \))

Received Bundles (S, \(\Omega \), GP, i)

Satellite ACS characteristics (X) + GP, S

Comm specs (C), Protocol (s), Contact Plan (\(K = f(S) \))

Bundle Broadcast (i , GP, \(\Omega \), S)

Orbital Mechanics

Attitude Control

Communication

Scheduling Optimization

(Dynamic Programming, validated with Mixed Integer Programming)
Agile Spacecraft Constellations Maximizing Coverage and Revisit

- Small Sat constellation + Full-body reorientation agility + Ground scheduling autonomy = More Coverage, for any given number of satellites in any given orbits
- Using Landsat as first case study (710 km, SSO, 15 deg FOV) w/ a 14 day revisit. Daily revisit needs ~15 satellites or 4 satellites with triple the FOV.
- Assuming a 20 kg satellite platform for option of agile pointing
- Scheduling algorithm allows 2 sat constellation over 12 hours to observe 2.5x compared to the fixed pointing approach. 1.5x with a 4-sat constellation
- Extendable to monitoring applications (e.g. coral reefs)

Agile Spacecraft Constellations Maximizing Coverage and Revisit

Over 12 hours of planning horizon using 2 satellites, 180 deg apart in the same plane:

- Using our **proposed DP algorithm**
- Using a **fixed Landsat sensor**, as is

Adding onboard autonomy to flight software + inter-sat communication to the constellation can improve science-driven responsiveness?
If longest latency < shortest gap, for pairs with the same priority
=> each satellite can be considered fully updated with information from all others, i.e. perfect consensus is possible, in spite of distributed decisions made on a disjoint graph.

Appropriately low latency in information exchange enables the onboard scheduler to observe ~7% more flood magnitude than a ground-based implementation.

Both onboard and offline versions performed ~98% better than constellations without agility.
Questions?

Sreeja.Nag@nasa.gov
SreejaNag@alum.mit.edu
Project Relation to NOS Concept

• Brief description of where your project fits into a NOS concept. For example but not limited to:
 • onboard data understanding and analysis;
 • inter-node coordination (including comms, standards, ontologies, commands);
 • Planning, scheduling and decision making;
 • Interaction to science and forecast models;
 • Cybersecurity

• Include graphics or pictures if appropriate.