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Project Objective

Earth Science Technalogy Office

* The study will identify driving

science and applied science
(natural hazard) use cases that
illustrate NOS concepts,
focusing in particular on
Hydrology science challenge
use cases from the Western
States Water Mission
(WSWM). The study will
identify relevant observing
assets, models, and datasets
that could be included in the
testbed to support these use
cases.
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Atmospheric Model prbesir { s
or Dataset =ealll ==

|

NASA's Land Data

Assimilation System Reservoirs (CaMa-Flood,

HRR, ISBA-TRIP, LISFLOOD,
RAPID, WATFLOOD)

River Routing Models conserve mass.
Credit: Cedric David 5
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Value of Assimilation

Earth Science Technalogy Office

Observation (e.g., SWOT)
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Assimilated data

https://github.com/c-h-david/rrr

Observations add accuracy to model, but model also adds information to observations
THIS DRIVES DATA SCIENCE CHALLENGES: SCALABILITY, FUSION, UNCERTAINTY, ETC
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Science Goal: Observe river Peak Flow events. :
* Radar for surface water height and extent
e Visual for surface water extent

* |n situ for stream flow

e UAVs, airborne, etc. if available

(b) Maximum Flow Distribution
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Cumulative Distribution

Challenge: Peak events are short, and often occur
between repeat passes.

Approach: Retask based on model predicts. Max flow under-observed;
* Use existing models to predict peak flow higher uncertainty.
* Retask one or more assets to observe.
e Select from assets that will be in position
during event.
* Predict allows pre-positioning UAVSs, airborne.
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Task available assets to
observe predicted event
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Computer forecasts of river flow increasingly being

=== produced at continental/global scales using NASA’s RAPID
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PRI b - Flood Forecasting (FF) Framework
refievines using RAPID (Salas et al., 2018)
. Streamflow Prediction Tool
===
= e =

Generated Flood Alert using RAPID Simulated Flow (Snow et al., 2016)

Nationwide Flood Forecasting

* Previously Snow et al. (2016) used the
ECMWEF reanalysis and forecast
ensembles to forecast flood using the

. RAPID model.
~ * Available through Tethys of BYU

Purple points show current NWS FF locations
Blue lines show the potential extent of FF using this
framework, which includes the flow routing using RAPID

Nationwide Flood Forecasting

Global-Scale Flood Forecasting

* Accuracies indicate the ERA-
RAPID produced similar
forecast as operational GloFAS

* Resolution of ERA-RAPID in
much higher than GIoFAS,
allows the regional FF

Comparison of Global-Scale FF using ECMWF/ERA-
RAPID and Operational GlIoFAS (Qiao et al., 2019)
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Flow Exceeding 90 Percentile:

* Number of days when flow exceeds the
90th percentile at any one 6-hourly time
step: shows come characteristics of
flooding patterns globally

* Near tropic and arctic, 90t percentile
exceedance of flow is spread over
numerous days indicating “flashier”
flood events, while mid latitudes floods
are of longer duration

* This 90t percentile flow approach can
be used to generate “triggers” for flood
alerts globally using existing forecasting
systems
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River Systems:

* Flow at 2.94 million river reaches (MERIT River Network; Lin et al., 2019)
were simulated using RAPID model

e GLDASv2.1 LSM runoff data were used as the input (publicly available)

* The largest 123,583 river reaches were selected (in red) based on long
term mean discharge (i.e., where Q, .., >= 100 m3/sec)
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Thank You!
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future goal: assimilation of SWOT data when SWOT

launches to fill in space/time blanks

Earth Science Technalogy Office
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SWOT data ‘ Assimilated in a river model

Challenge: data assimilation methods need a way to relate
errors in observed variables to errors in the corrected variables

13
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e Generated various datasets in Western United States and worldwide
e 700K rivers (20 years, 3 hours daily)
* 3M rivers (~3 years e hours daily)

* Developed by Cedric David

* We are using this data to support some proposed development with
Steve Chien’s task.
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Sources of errors in river discharge E31C

* Input error (runoff)

* Model structural error (flow wave equation)

* Parameter error (e.g. propagation time)

Considerations

Involved in Evaluating
Mathematical Modeling of
Urban Hydrologic Systems

By DAVID R. DAWDY

HYDROLOGIC EFFECTS OF URBAN GROWTH

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1591-D

Dawdy (1969)

RESEARCH LETTER

10.1029/2019(

Geophysical Research Letters

Analytical Propagation of Runoff Uncertainty
Into Discharge Uncertainty Through a Large
River Network

Cédric H. David* {2, Jonathan M. Hobbs', Michael J. Turmon?, Charlotte M. Emer
1(2, and James S. Famiglietti'?

John T. Reager

A healthy literature exist on river discharge error,
surprisingly relatively little exists on the impact of
runoff error on discharge error, such knowledge is

Runoff is uncertain
(from D. Lettenmaier)

13 Credit: Cedric David

5 5 20 25
1994-2003 runoff average (mm/day) 15




