

End-to-End Design and Objective Evaluation of Sensor Web Modeling and Data Assimilation System Architectures PI: Michael Seablom, GSFC

Objective

This project will: (i) design a sensor web architecture that couples current and future Earth observing systems with atmospheric, chemical, and oceanographic models and data assimilation systems; and (ii) build an end-to-end sensor web simulator (SWS) based upon the proposed architecture that would objectively assess the scientific value of a fully functional model-driven meteorological sensor web. The SWS will serve as a necessary trade studies tool to evaluate the impact of selecting different types and quantities of remote sensing and in situ sensors, to characterize alternative platform vantage points and measurement modes, and to explore rules of interaction between sensors and with weather forecast/data assimilation components to reduce model error growth and forecast uncertainty.

Approach

The proposed Sensor Web Simulator will be a large software system comprised of several large Subsystems:

- •User Interface
- Simulation Control
- •Simulation Analysis
- Sensor Web Model
 Simulated Observation Generator

<u>Co-I's/Partners</u>

- Stephen Talabac / GSFC
- Brice Womack, Robert Burns / Northrop Grumman TASC
- Joe Terry, Joseph Ardizzone / SAIC
- Lars Peter Riishojgaard / UMBC

Sample graphical user interface for the sensor web simulator.

Key Milestones

 Complete detailed design 	02/2007
• Acquire GEOS5 & GSI codes from the GMAO	02/2007
 Complete re-engineering of OSSE 	09/2007
 Command and Control / External Control 	
components preliminary design review	02/2008
 Design and implement software coupling from 	
Targeting component to External Control	09/2008
 Conduct OSSE for lidar instrument 	09/2008
• Execute use case scenario with simulator	09/2009
Fntry TRI = 2. Fxit TRI = 4	

