

Land Information Sensor Web

PI: Paul Houser, Institute of Global Environment and Society, Inc.

Objective

This project will develop a prototype Land Information Sensor Web (LISW) by integrating the Land Information System (LIS) in a sensor web framework. Through continuous automatic calibration techniques and data assimilation methods, LIS will enable on-the-fly sensor web reconfiguration to optimize the changing needs of science and solutions. This prototype will be based on a simulated interactive sensor web, which is then used to exercise and optimize the sensor web - modeling interfaces. In addition to providing critical information for sensor web design considerations, this prototype would establish legacy for operational sensor web integration with modeling systems.

Approach

This work will be performed in six steps:

- Scenario development: a synthetic global land "truth" will be established
- Sensor simulation: a model of a future land sensors will be established
- Sensor web framework: sensor web communication, reconfiguration and optimization will be developed
- Evaluation and optimization metrics: various land surface uncertainty, prediction and decision support metrics will be established
- LISW experiments: to exercise and evaluate the system.
- S'ensor web design implications: design trade-offs
 <u>Co-I's/Partners</u>
- James Geiger / NASA-GSFC
- Sujay Kumar, Yudong Tian / GEST-UMBC

<u>Key Milestones</u>

- Scenario development
- Sensor simulation
- Sensor web framework
- $\boldsymbol{\cdot}$ Evaluation and optimization metrics
- · LISW experiments
- Sensor web design implications
- Collaboration, Communication & Dissemination

March/2007 Sept/2007 March/2008 Sept/2008 March/2009

August/2009

August/2009

