PILou, Yunling OrgJPL
Award #AIST-05-0012Managing CenterJPLStatusOpen
TitleAutonomous Disturbance Detection and Monitoring System for UAVSAR


We will develop an autonomous disturbance detection and monitoring system with imaging radar that directly addresses one of NASA's major objectives to develop new space-based and related capabilities to advance Earth observation from space and demonstrate new technologies with the potential to improve future operational systems. This new capability will provide key information for the rapid response of natural disasters, such as hurricane landfall and forest fire, and can be readily extended to other hazards such as earthquake, volcanic eruption, landslide, and flood. The autonomous system will enable targeted observation of short-lived science phenomena or specific geologic features on planetary missions without overwhelming onboard data storage or downlink capacity and will reduce mission operations cost. This system has the potential to benefit the commercial sector by effectively monitoring forest disturbance due to fire, hurricane, or disease infestation.

The autonomous system combines the advantage of radar's all weather capability to penetrate through clouds and collect data at night with high fidelity, high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. This smart sensing technology development (Topic Area 1 of the proposal call) leverages the interferometric synthetic aperture radar onboard processor development for the NASA AIST-02 program and onboard automated response experience from Autonomous Sciencecraft Experiment onboard the New Millennium Earth Observation One spacecraft. We will improve the fidelity of the interferometric SAR onboard processor by implementing polarimetric and interferometric calibration capabilities, science algorithms for forestry application, and artificial intelligence for onboard automated response capability. We will develop a prototype smart sensor for demonstration on NASA's UAVSAR, an L-band polarimetric repeat-pass interferometric SAR sys
tem. We will use UAVSAR to demonstrate automated response based on its own prior observation and based on external triggers from other sensors in a sensor web.

This technology will take three years to develop. We will enter the development at TRL 3. The technology will advance to TRL 4 after 18 months by completing the high fidelity onboard processor development and verifying the automated response capability in a laboratory environment. We will exit the program at TRL 5 by demonstrating the closed-loop smart sensor concept with the UAVSAR instrument. This will reduce the risk, cost, and development time for infusing the smart sensor technology into future spaceborne Earth observing mission.