PIHoward, Ayanna MOrgGeorgia Tech Research Corp.
Award #AIST-05-0006Managing CenterGRCStatusOpen
TitleReconfigurable Sensor Networks for Fault-Tolerant In-Situ Sampling


The goal of this proposal is to develop and validate the core technologies needed to enable reconfigurable sensor networks for fault-tolerant in-situ sampling for Earth science applications. The key technologies, which build on prior work done by the proposers, focus on science-driven sensor network diagnosis and topological reconfiguration of sensor networks. Control of reconfigurable sensor networks is fundamentally a difficult problem in which the system must balance issues of power usage, communication versus control, the effectiveness of adapting to the environment as well as to changing science requirements. These issues generally arise due to the limited perception, precision, and range constraints on communication channels that comprise the network. Diagnosis involves identifying and communicating necessary changes in network topology required to achieve science goals and compensate for sensor failure or communication dropouts. Reconfiguration involves physically reconfiguring the network topology based on input from the diagnostic process, in effect establishing a self-adapting sensor network. The novelty of our approach is on the focus of a decentralized versus centralized method of control in which interactions between sensor nodes are modeled topographically and manipulated locally to produce desired global behavior. These technologies will be integrated and demonstrated using a network of mobile sensors applied to a representative Earth science investigation. This proposal is directly responsive to Topic Area 1: Smart Sensing of the NRA Call by enabling "autonomous event detection and reconfiguration of sensor assets." The period of performance is planned as a 36-month effort and has an entry TRL of 3, with a planned exit TRL of 5.