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Introduction KIND))

* Bandstructure Engineered Type-II
Superlattice Antimonide Avalanche p— oS
PhotoDiodes (BETA-APD) et G
* Develop short-wave infrared (SWIR) B -G8 s
detectors (1-2 pum)
— Enhance performance
* High gain, high bandwidth
* Low excess noise, low dark current
— Enable high operating temperature (> 200 K)
* Reduce SWaP of SWIR receivers/imagers
— Mature from TRL2to 4

— Funded under ACT 2020 (Amber Emory)
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Mission Relevance KlND))

Krishna INfrared Detector Labo

e Relevance to Earth science

— Greenhouse gas sensing (CH,, CO,)
— Topographic imaging - - -
— Wind sensing N - B
 Two detector formats
— Single element — GHG lidar 1.65 um
2.05 um

— Small format (4x4) — precursor to large
format array (imaging, hyperspectral,
etc.)
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Comparison to the State-of-the-Art KlND))

e Current SWIR detector technologies have
limitations
— HgCdTe: excellent performance, requires
cryocooling (T,, ~100 K)

— InGaAs APD: high operating temperature,

high excess noise
Lidar

e BETA-APD seeks to address these Instrument
limitations CubeSat
. Platform
— Previous APD development has
demonstrated excess noise factor <2 BETA-APD

— High operating temperature reduces SWaP-C  Receiver
by eliminating cryogenic cooling

* Reduce size and weight by two orders of
magnitude

* Reduce power by factor of 3-4
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Key Advantages of BETA-APD KlND))

* Leverages advances in superlattice

technology BETA-APD
— Separate Absorption, Charge, Multiplication Receiver
(SACM) structure enables independent
optimization each layer X‘glt)h;ﬁ‘;':"
 Employs industry standard IlI-V materials swi | 2 (EIEHIY Ampifiea
otons |4 |S | ® = Iigna
on standard InP substrates — (2|25 |5 | m—
— Rapid transition to manufacturing ‘T’Vz';t‘sft':i'c'zf:d
. . v \ 4 v
* Builds on recent advances in APD —|.|—| j‘ﬂ‘l_‘ Conduction
performance e R
: : : Miniband

— Low excess noise, high gain
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Research Plan KIND))

* Design, grow, and test APD materials

— Theoretical simulation by C. Grein (UIC)

— Molecular Beam Epitaxy at OSU SEAL facility
* Fabricate and test detector devices

— Design and fab by SK Infrared LLC

— Use clean room facilities at OSU Nanotech
West

* |Independent device testing by NASA

— Xiaoli Sun (GSFC) — general detector
performance, benchmark against MCT

— Amin Nehrir (LaRC) — swap out single
element detector in lidar testbed

Design and
Theoretical
Modeling

Test and
Analysis

\

Epitaxial

Design to Growth

Demonstration
Cycle

Material
Character-
ization

Micro/Nano
Fabrication
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Separate Absorption, Charge and Multiplication (SACM) KIN[)))
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Material Considerations: Bandgap, Lattice Constant, Substrates KI N D))
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* Choice of Substrates (InP, InAs and GaSb)

* InPis available in large area (6-inch), is transparent in the SWIR, and facilitates scalability and manufacturability
* InAs has bandstructure similar to HgCdTe and could lead to high gains

* GaSb based APDs have potential to reach MWIR/LWIR
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Modeling of Impact lonization Properties KI N D))
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e Methods

— Full zone electronic band structures using empirical pseudopotential method plus spin-orbit
interactions

— Computed Al 55Gag 15AS0 56Sbg 44 and Alg 79INg 51ASp.74Sbg 26 UsSing virtual crystal approximation
— Predict hot carrier impact ionization rates in those band structures
— Predict impact ionization coefficients for transport in those band structures
Electronic Band Structure Impact lonization Rates Impact lonization Coefficients
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Calculations predict Alp gsGag 15ASg 56Sbg 44 0N INP to be good electron APD
(Modeling by Prof. Grein, University of Illinois)
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Design, Growth and Fab of GaAsSb/AlGaAsSb SACM KI N D))
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* Maximum gain ~ 278 at 69.5V
e Maximum measurable QE was ~ 2270 % at 68 V
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High gain, low noise 1550 nm GaAsSb/AlGaAsSb
avalanche photodiodes
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High sensitivity avalanche photodiodes (APDs) operating at eye-safe infrared wavelengths (1400-1650 nm) are
essential components in many communications and sensing systems. We report the demonstration of a room tem-
perature, ultrahigh gain (M = 278, 1 = 1550 am, V =69.5V, T = 296 K) linear mode APD on an InP substrate using
a GaAsg 5Sbo s /Al 55Gag.15A50.56Sbo. 44 separate absorption, charge, and multiplication (SACM) heterostructure. This
represents ~10x gain improvement (M = 278) over commercial, state-of-the-art InGaAs/InP-based APDs (M ~ 30)
operating at 1550 nm. The excess noise factor is extremely low (F < 3) at M =70, which is even lower than Si APDs.
This design gives a quantum efficiency 0f 5935.3% at maximum gain. This SACM APD also shows an extremely low tem-
perature breakdown sensitivity (Cpq) of ~11.83 mV/K, which is ~10x lower than equivalent InGaAs/InP commercial
APDs. These major improvements in APD performance are likely to lead to their wide adoption in many photon-starved
applications.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work
must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

hitps://dol.org/10.1364/0PTICA.476963S, |Lee et al https://doi.org/10.1364/0OPTICA.476963 (2023)
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Dark and Photocurrent with 1.55 um lllumination
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* Punch through at 45V and breakdown at 70 V
* Dark IV does not completely scale with area
* Further reduction in dark current is needed
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Target Specifications Kl N D))
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Key Question: How to rapidly advance the TRL level of this technology and make it better than SoA
(Laser Components) for operation at 1.65 um (incorporation into methane lidar testbed)

Detector Characteristic BETA-APD Design Target Laser Components APD

Large single element

detector 200 um diameter 205 um diameter
Operating Temperature (T,)) > 200 K 295 K

Linear gain > 100 10
Responsivity >0.94 A/W (M=1) 0.94 (M=1)
Excess noise factor < 3.2 (M=30) < 3.2 (M=10)

Dark current < 25 nA (M=30) < 25 nA (M=10)
Noise Equivalent Power < 0.02 pW/HzY2 (M=30) < 0.07 pW/HzY2 (M=10)
Bandwidth > 1 GHz (M=30) > 1 GHz (M=10)
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Summary and Next Steps Kl N D))
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e Summary of Progress

* Developed a fabrication process ready for pre-production of 1.65 um APDs
— Maximum useful gain is 73x for low light levels at room temperature

* High operating bias and dark current observed in the GaAsSb/AlGaAsSb SACM
APD

* Next steps
* Execute test and measurement plan for benchmarking APD performance
* |nvestigate source of dark current using IVT measurements

* Redesign, grow epitaxial structure and fabricate single element detectors to
reduce operating bias, punchthrough and dark current

* Develop small format 4x4 mini-arrays to test spatial uniformity
e Continue to develop 2 um APD (InAs-based detectors)
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