

POC: John Schlaerth Raytheon Technical Fellow ATLIS-P Chief Engineer John.Schlaerth@rtx.com 310-648-0730

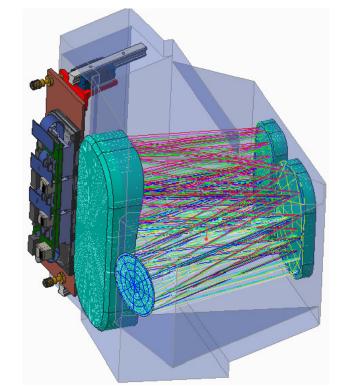
Advanced Technology Land Imaging Spectroradiometer-Prototype (ATLIS-P) Advanced Technology Demonstration

Jeffery J. Puschell^b, John Schlaerth^a, Lacy Cook^b, John P. Schaefer^b, Kushal Mehta^a, Joseph Choi^a and Kyle Heideman^a

2023 June 21

^aRaytheon Intelligence & Space ^bRetired from Raytheon ATLIS was funded by NASA ESTO through the Sustainable Land Imaging-Technology Program Grant NNX16AP64G/80NSSC18K0103. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Acknowledgements


- Sustained efforts of the ATLIS-P engineering team, especially the authors for this paper, enabled project success:
 - -Principal Investigator: Dr. Jeff Puschell (retired)
 - -Chief Engineer: John Schlaerth
 - Test Engineers: Dr. Joe Choi, Dr. Kushal Mehta, Dr. Kyle Heideman
 - Telescope Manufacturing: Dr. John Schaefer (retired)
 - -Optical Design Lead: Lacy Cook (retired)
- Many thanks to NASA ESTO for funding this work as part of Sustainable Land Imaging-Technology 2015 (SLI-T 2015) through grants 80NSSC18K0103 and NNX16AP64G to Raytheon Company

ATLIS-Prototype (ATLIS-P)

- SLI-T 2015 project involved designing, building, testing and demonstrating an Advanced Technology Land Imaging Spectroradiometer Prototype (ATLIS-P)
 - Interchangable spectral filters at 865 nm and 443 nm cover entire FPA
 - VIIRS Integrated Filter Assembly (IFA) provided additional VNIR bands
- Key elements of the technology demonstration include:
 - Wide FOV nearly telecentric Freeform Reflective Triplet (FFRT) telescope with real entrance pupil
 - Production digital Si:PIN FPA based on Raytheon space-qualified SB501
 - ATLIS system engineered and optimized for SLI-T 2015 Reference Mission Architecture (RMA) requirements using ATLIS Performance Model (APM), an integrated imager system performance model
 - Compact, end-to-end onboard calibration system
- ATLIS-P telescope and FPA design characteristics were selected to reduce cost, while enabling a valid demonstration of system performance

Basic question posed by ATLIS-P: Can a small aperture Freeform Reflective Triplet Telescope imaging system meet SLI-T RMA 2015 requirements?

ATLIS-P Entrance Pupil Diameter (EPD): 8.74 cm

ATLIS-P is a testbed for future NASA and Raytheon funded demonstrations of calibration, VNIR and SWIR focal plane technology and any other technologies that support NASA and USGS SLI goals

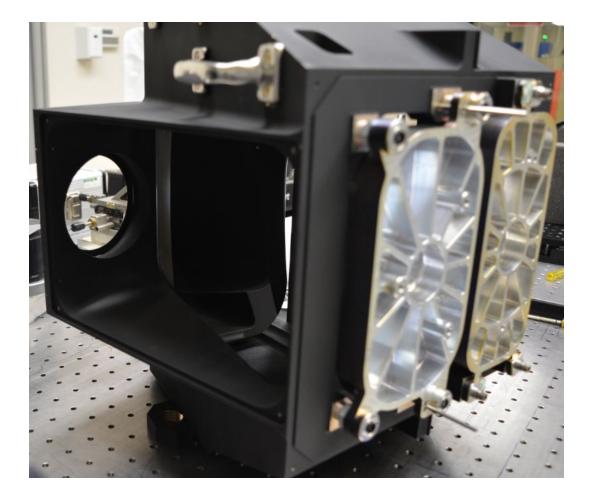
ATLIS-P supports Sustainable Land Imaging (SLI) architectures

- ATLIS-P supports future SLI architectures by providing a direct path to a disaggregated architecture using an ATLIS-like approach for the VSWIR and a separate instrument for the TIR – similar to the current Landsat 8/9 architecture
 - Other work at Raytheon with WFOV emissive infrared refractive systems had already reduced risk for an emissive infrared element of this architecture similar to TIRS – prompting us to develop the freeform Zernike polynomial described three mirror reflective telescope for SLI-T
- ATLIS-P also supports full spectrum instruments by demonstrating a scalable design approach that could be built with the larger aperture size required to deliver high quality 60 m TIR pixels
 - Improved understanding of freeform telescope captured in ATLIS combined with improved system engineering tools improves technology readiness for a larger aperture ATLIS-like approach

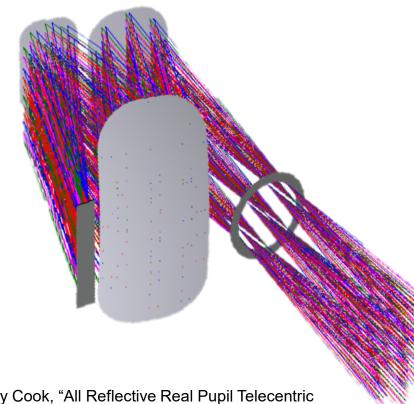
ATLIS-P telescope extends US industrial capabilities

- ATLIS-P telescope is the first Freeform Reflective Triplet (FFRT) telescope manufactured by US industry and the first known FFRT for the VNIR
 - Earlier telescopes with all free form mirrors developed by University of Rochester and TNO for Tropomi among others are not RTs and do not address SLI-T RMA requirements for aperture size, FOV and IFOV
- New freeform metrology methods were created and demonstrated with successful Magnetorheological (MRF) figure correction
- Lessons learned include:
 - Freeform mirrors require more processing time to achieve figure
 - Freeform Zernike mirror alignment sensitivities differ from rotationally symmetric aspheres, requiring models that account for Zernike sensitivities

Thanks to NASA's investment in this technology, ATLIS-P reduced risk and inspired design and fabrication of multiple FFRTs for a wide variety of Earth observation systems


Free form optics can reduce optical aberration and minimize instrument size and mass for wide FOV systems

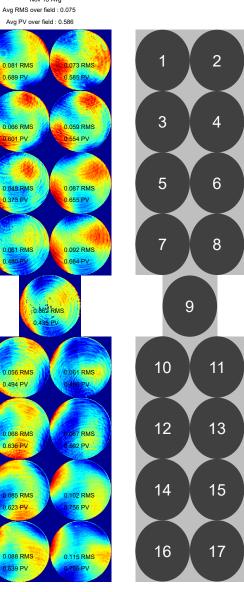
- Free form optical elements have shapes that are not manufactured using standard spherical or aspherical manufacturing techniques
 - Require new generation of optics manufacturing machines that can be programmed to create a shape defined by other mathematical functions such as Zernike polynomials or even discrete element arrays that are produced by optimizing figures of merit at the optical system level
- These abstract surface shapes can be designed and manufactured to minimize aberration across wide fields of view with fast optics (low f/numbers) to achieve image quality performance and etendue more typical of larger systems in a smaller package than legacy systems


Three mirror WFOV ATLIS-P Free Form Reflective Triplet Telescope

Raytheon Intelligence & Space Notice: Data on this page is controlled by restrictions listed on the title page. Unpublished work Copyright 2023 Raytheon Company

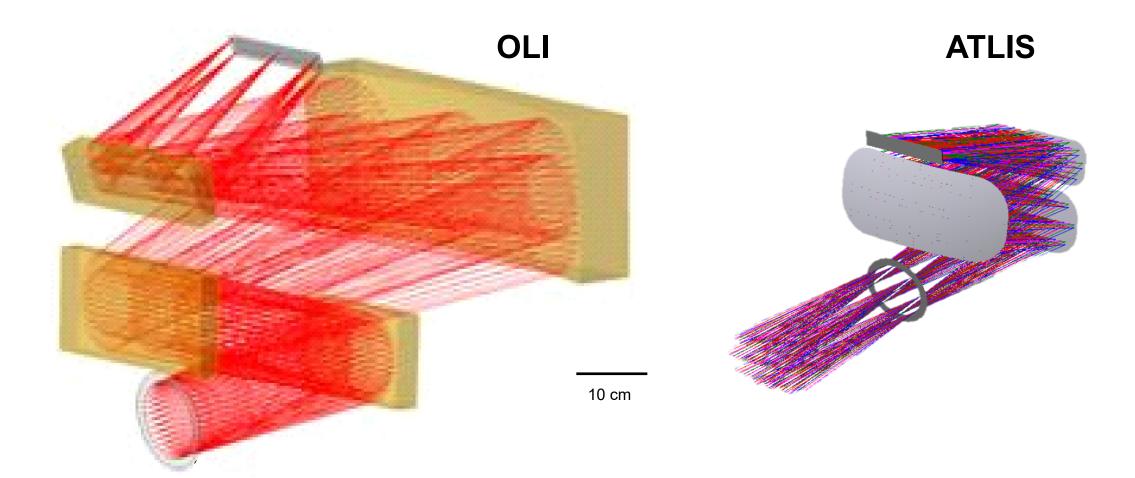
ATLIS-P telescope achieved low WFE performance needed for high performance small satellite imagers

Reference: Lacy Cook, "All Reflective Real Pupil Telecentric Imager", US Patent 8,714,760 (2014)


- Circular, external, real entrance pupil enables accurate calibration with smaller sources than alternative designs
- Nearly telecentric design with maximum angle over FOV of 1.21 mrad
- Image AOI: 22.56°
- FOV: 1 x 16 deg²
- EFL: 48 cm (f/5.492 with EPD of 8.74 cm)
- Diffraction limited at 660 nm
- Design residual (waves at 632.8 nm)
 ✓ Average RMS WFE: 0.016
 - ✓ Maximum RMS WFE: 0.029
- Measured average WFE across full FOV of 0.075 wave

ATLIS-P telescope fabricated by Raytheon in Texas and integrated in California achieved excellent WFE across full FOV

- General Purpose Optics (GPO) lab using 43 cm, 632.8 nm Zygo interferometer
- Average of five measurements with piston, tilt and power removed
- Average RMS WFE across 17 tooling ball positions is 0.075 wave
- Maximum RMS WFE is 0.115 wave


Tooling Ball #	RMS WFE (waves)	PV WFE (waves)	Power (waves)
1	0.081	0.689	-1.259
2	0.073	0.585	-1.298
3	0.066	0.601	-1.422
4	0.059	0.554	-1.430
5	0.049	0.373	-1.608
6	0.087	0.655	-1.636
7	0.061	0.480	-1.858
8	0.092	0.664	-1.827
9	0.062	0.495	-2.007
10	0.056	0.494	-2.092
11	0.061	0.486	-2.050
12	0.068	0.636	-2.205
13	0.067	0.502	-2.189
14	0.085	0.623	-2.318
15	0.102	0.756	-2.281
16	0.088	0.639	-2.444
17	0.115	0.786	-2.533

Notice: Data on this page is controlled by restrictions listed on the title page. Unpublished work Copyright 2023 Raytheon Company

Raytheon

ATLIS-P meets L8/L9 VSWIR requirements using free form reflective triplet that is 75% smaller in volume than OLI telescope

Reference: Figoski et al. SPIE 7452, 74520T (2009)

Raytheon Intelligence & Space Notice: Data on this page is controlled by restrictions listed on the title page. Unpublished work Copyright 2023 Raytheon Company

ATLIS-P test results combined with model predictions confirm this innovative imager meets SLIT-15 RMA performance requirements

- Spatial and temporal coverage performance across full FOV meets RMA requirements, enabling credit for spatial and temporal coverage
- Radiometric SNR measurements agree with predictions to within 5%
- Saturation radiance no saturation for maximum spectral radiance in all bands
- Relative Edge Response (RER) meets requirements across the full field of view, except in the PAN band, which can be met with low fill detectors
- Edge Extent measurements and predictions meet edge extent requirements
- Pixel-to-pixel uniformity 0.1% or better following non-uniformity correction
- Radiometric stability 0.0997±0.184% meaning each pixel varied by less than 0.1% over both short duration (one minute collects over 99 mins/day) and over 16 days, meeting both parts of the RMA radiometric stability requirement

In ATLIS-P, we examined key elements required for implementing small imaging systems that meet RMA 2015 requirements

- Low aberration all-reflective WFOV telescopes for pushbroom imagers
 - Free form designs enable better correction of aberrations across wide FOV than legacy designs advanced manufacturing techniques fabricated mirrors successfully
 - However, to realize and maintain this performance, improved metrology methods are needed to integrate FPAs with the optical system – innovative techniques enabled quick and consistent low WFE telescope alignment, but FPA integration remained uncertain
 - More work is needed to establish that small WFOV telescopes maintain required focus and WFE over full range of operating conditions, following launch
- Digital FPAs with higher spatial frequency sampling than legacy systems to improve MTF and software Time Delay and Integration (TDI) to improve SNR
 - ATLIS-P verified that higher spatial frequency sampling improves system MTF and that software TDI improves SNR to required RMA 2015 performance
 - Analysis showed that low fill detectors and resampling (versus aggregation) provide additional system MTF improvements needed for successful small land imaging systems
- Compact onboard calibration source
 - Improved full spectrum calibration technology enables reducing size of legacy sources by ~90%
 - ATLIS-P demonstrated proof of concept for a source to be more fully developed on IRIS

Summary

- New and emerging optical, focal plane and calibration technology enables much smaller land imagers than current systems
- ATLIS-P achieved performance required to meet SLI-T RMA 2015 requirements - advanced key technology from TRL 3 to TRL 5
- Lessons learned in ATLIS-P telescope build and test reduce risk for future imaging system developments
- Overall comparison between measurements and model predictions looks good
- ATLIS-P supports both disaggregated architectures and full spectrum single instrument land imaging systems
- Key ATLIS-P technology benefits many other NASA Earth Science missions, especially those involving small satellite systems

Thanks to NASA ESTO for this investment in advanced land imager technology!