Antimonide Unipolar Barrier Infrared Detectors for Earth Science Applications

PI: David Z. Ting *(Jet Propulsion Laboratory)*

Team Members:
Alexander Soibel, Sir B. Rafol, Arezou Khoshakhlagh, Cory J. Hill, Sam A. Keo, Brian J. Pepper, Anita Fisher, Sarath D. Gunapala

NASA Jet Propulsion Laboratory, California Institute of Technology

Program: SLI-T 19

Government sponsorship acknowledged
Outline

- III-V semiconductor barrier infrared detector (BIRD) technology development

- Barrier infrared detectors for ESTO applications
 - Land imaging technology, CIRAS, HyTES, HyTI, cFIRST
Motivation for III-V Semiconductor Infrared Detector Technology Development

- **Hg$_x$Cd$_{1-x}$Te alloy (MCT)** is the most successful high-performance infrared detector material to date
 - Varying alloy composition provides continuously adjustable cutoff wavelength coverage, ranging from NIR to VLWIR
 - **Soft and brittle.** Requires expert handling in growth, fabrication, storage. **Costly.**
 - Weak Hg-Te bond. Longer λ_{cutoff}, higher Hg fraction, progressively more challenging
- **FPAs based on (near) lattice-matched bulk III-V semiconductor photodiodes** are highly successful, but only in a few cases where suitable substrates are available.
 - **SWIR InGaAs** performs at near theoretical limit. Single color, limited cutoff wavelength adjustability.
 - **InSb** dominated MWIR market, despite lower operating temperature than MCT. Fixed cutoff wavelength.
 - Lacking the continuous cutoff wavelength adjustability of MCT

Goal: Develop high-performance infrared photodetectors based on robust III-V semiconductor, with wide-range cutoff wavelength adjustability.
Advances in III-V Semiconductor IR Photodetectors

Antimonide infrared absorbers

- InGaAsSb alloy: 2 - 4 µm cutoff wavelength
- Type-II superlattices (artificial IR material)
 - Continuously adjustable bandgap provides cutoff wavelength coverage from 2 µm to >15 µm
 - Tunneling and Auger dark current suppression
- All can be grown on GaSb substrates
 - 2”, 3”, 4” diameter format commercially available.

Unipolar barrier detector architecture

- Unipolar barrier detector architecture
 - Unipolar Barriers block electrons but not holes (or vice versa)
 - Examples: nBn, XBn, XBp, CBIRD
- Can suppress G-R and surface leakage dark current, w/o impeding photocurrent
- Higher operating temperature / sensitivity

The confluence of these two developments has led to a new generation of versatile, cost-effective, high-performance infrared detectors and focal plane arrays based on robust III-V semiconductors, with wide-range cutoff wavelength coverage.
(HOT) MWIR InAs/InAsSb Type-II Superlattice (T2SL) FPA

- Antimonide T2SL high operating temperature barrier infrared detector (HOT-BIRD)
 - Customized cutoff wavelength to match InSb. Excellent FPA imaging performance at 160K
- T2SL FPA with ~same cutoff wavelength, but much higher operating temperature than InSb
 - Planar InSb (ion implant) ~ 80K. MBE epi InSb ~ 95-100K (can image up to 110-120K)
 - Klipstein et al., Infrared Phys. & Technol. 59 (2013) 172–181
- Reduces demand on cryocoolers – Enables longer cooler lifetime, or the use of compact coolers.
- Retains the same III-V semiconductor manufacturability & affordability benefits as InSb
- T2SL FPA demonstrating a clear advantage over a major incumbent technology (InSb)
 - In 2018, InSb FPA led all photodetector FPA market in volume, with >50% market share (units sold).

InAs/InAsSb type-II superlattice absorber + unipolar barrier architecture => Breakthrough MWIR detectors

SBF-193 ROIC: 24-µm pitch, 640×512 format. 300K background, f/2 optics. 160K (170K): NEDT 18.7 mK (26.6 mK), Operability 99.7% (99.6%)
Unipolar Barrier IR Detectors – SWIR to VLWIR

- Unipolar barrier infrared detectors
 - IR absorbers: GaInAsSb, InAsSb, InAs/InAsSb T2SL
 - All grown on GaSb substrates
 - Cutoff wavelengths ranging from 2.5 to 15.7 µm demonstrated
- Focal plane arrays
 - Cutoff wavelengths ranging from 2.6 to 14.1 µm demonstrated
 - High uniformity and operability

JPL antimonide alloy and type-II superlattice unipolar barrier infrared detectors have demonstrated high uniformity & operability FPAs, with cutoff wavelengths covering SWIR to VLWIR.
Long Wavelength Infrared FPA for Land Imaging

- QWIP FPAs with response up to 12 µm used in NASA HyTES & LandSat-8 TIRS for hyper/multi-spectral land imaging
 - High spatial uniformity & temporal stability
 - No need for frequent system recalibration
 - Relatively low conversion QE & high dark current density
 - Low FPA operating temperature (~43 K)
- Developed type-II superlattice (T2SL) barrier infrared detector (BIRD) FPAs to meet NASA Sustainable Land Imaging (SLI) interests in thermal IR bands in the 8 – 12 µm range.
- LWIR FPA Results:
 - FPA with λ_cutoff ~ 12.6 µm T2SL absorber material and SBF-193 ROIC
 - J_{dark}(65K) ~ 3x10^{-5} A/cm²; QE ~ 27%, no A/R coating. FPA operability ~ 99.98%
 - Estimated 20K operating temperature advantage over QWIP FPA.
 - Reduce cooling demand for favorable SWaP.
- LWIR T2SL FPA have also been fabricated using L3 “silicon sandwich” process, paving the way to multi-megapixel LWIR FPAs for high-resolution land imaging applications.

Long wavelength type-II superlattice (T2SL) barrier infrared detector (BIRD) FPAs can provide an estimated 20 K operating temperature advantage over existing QWIP FPAs.
Digital FPA for Higher Sensitivity and Dynamic Range

- FPAs made with in-pixel digital readout integrated circuit (D-ROIC)
 - Very large effective well capacity
 - Enables longer integration time for improved signal-to-noise ratio
 - Higher operating temperature
 - High dynamic range
- D-ROIC from Copious Imaging (Anduril)
 - MIT-Lincoln Lab heritage
 - 20 µm pitch, 640x480 and 1280x480 formats
 - Well depth: >400 Me⁻
 - ~10 Me⁻ for typical analog ROIC
- D-FPAs with LWIR T2SL detector arrays hybridized to D-ROICs

(SLI-T 19) Project co-I’s from Copious Imaging (Anduril): Chris David, Justin Baker, Mike Kelly
HOT-BIRD Focal Plane Arrays for The CubeSat Infrared Atmospheric Sounder (CIRAS)

- Concept for space-borne MWIR hyperspectral instrument in 6U CubeSat
 - 625 channels in 4.08 - 5.13 μm range
 - Needs better sensitivity than for imaging applications
 - Cool detectors further for lower dark current
 - CubeSats SWaP limits cryocooling capabilities
 - Limits how low in temperature we can cool the FPA
- FPA Requirement
 - Cutoff > ~ 5.4 μm
 - Dark current density < 1×10^{-6} A/cm^2
 - Operating temperature > 110 K
 - Affordability is also important for relatively low-cost CubeSat missions
- HOT-BIRD FPA for CIRAS
 - SBF-193 ROIC: 24-μm pitch, 640×512 format
 - Mean QE = 53% for 3 – 5 μm band at 115 K, no ARC
 - Mean J_{dark} = 1.7 x 10^{-7} A/cm^2 at 115 K
 - Mean NEDT = 22.9 mK for 300 K background, f/7.8 optics.
 - NEDT operability 99.94%
- Meets CIRAS hyperspectral imaging requirements
- CIRAS based Pyro-atmosphere InfraRed Sounder (PIRS) recently selected for the ESTO FireSense Technology Program (FIRET-22)
Hyperspectral Thermal Emission Spectrometer (HyTES)

- Airborne hyperspectral imaging spectrometer
 - 256 spectral channels between 7.5 and 12 µm
 - First flown in 2012, originally with LWIR QWIP FPA
 - Flying with LWIR InAs/InAsSb T2SL FPA since 2021
 - Both QWIP & T2SL FPAs exhibit good *temporal stability*; no in-flight recalibration (over several hours).

[Images of H2S, NH3, SO2, and CH4 with dates and locations: 2021-05-25, Los Angeles, California; 2021-08-27, Kiruna, Sweden]

[Link: https://hytes.jpl.nasa.gov/]

Copyright 2023 California Institute of Technology.
HyTI, c-FIRST

- **HYTI: Hyperspectral Thermal Imager**
 - PI: R. Wright, Hawaii Institute of Geophysics & Planetology (HIGP)
 - JPL LWIR T2SL BIRD FPA
 - SBF-193 ROIC: 24-μm pitch, 640×512 format
 - Cutoff wavelength: 10.6 μm
 - Mean $J_{\text{dark}} = 2.3 \times 10^{-5}$ A/cm² at 68 K.
 - Mean QE = 47% for 8.1 – 9.4 μm filter;
 28% for 8.2 – 10.7 μm filter
 - Mean NEDT = 33.4 mK for 300 K background,
 f/5.4 optics. NEDT operability 99.7%

- **c-FIRST: Compact fire infrared radiance spectral tracker**
 - MWIR HOT-BIRD digital-FPA

https://esto.nasa.gov/invest/hyti/
References /Acknowledgement

Unipolar barrier IR detectors – nBn, XBn, CBIRD

Type-II superlattice barrier IR detectors

Land imaging technology, CIRAS, HyTES, HyTI, cFIRST

- HyTES: https://hytes.jpl.nasa.gov/
- “HYTI: thermal hyperspectral imaging from a CubeSat platform”, R Wright; M Nunes; P Lucey; L Flynn; L Gunapala; D Ting; S Rafol; A Soibel; C Ferrari-Wong; A Gabrieli; P Thenabal, SPIE Proceedings 11131, CubeSats and SmallSats for Remote Sensing III; 111310G (2019)

Acknowledgement: We thank Sachi Babu, Jason Hyon, Valerie Scott, and Eastwood Im. A part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D004). Government sponsorship acknowledged.