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Introduction

• Remote sensing: high spatial resolution can be  
expensive and physics dictates trades of footprint 
versus spatial resolution. Often instrument 
configuration can be optimized to target. 

• DT uses information from a lookahead sensor to 
identify targets for the primary, pointable sensor to 
improve science yield

• Dynamic targeting (DT) can improve the science 
return of swath/mode limited instruments

• We advocate DT to become commonplace across 
many future Earth Science missions
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Related Work: Cloud Avoidance

• JPL Mission (Thompson et al., 2014): Rapid spectral 
cloud screening (compression) for AVIRIS airborne 
instrument 

• JAXA - L3Harris Mission (Suto et al., 2021): cloud 
avoidance for TANSO-FTS-2 thermal and near 
infrared carbon observations 

• JPL Study (Hasnain et al., 2021): Greedy, 
graph-search, DP algorithms for agile spacecraft 
imaging of clear vs. cloudy skies (binary)

Hasnain et al., 2021
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Concept: SMICES

• NASA ESTO MIssion Concept: Smart Ice Cloud Sensing (SMICES) 
• Dynamic measurements of different storm clouds categories
• Swope et al. 2021: greedy heuristics

• Reconfigurable, smart instrument combining: 
• *Radiometers (lookahead): up to 45°
• **Radar (primary): up to ±15°

• SMICES would use AI for:
• instrument calibration
• primary instrument on/off and targeting: 

• radiometer → likely deep convective ice storm
• radar → on/off and targeting

❖ Our work continues and generalizes the SMICES concept trajectories
Bosch-Lluis et al., 2020
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Mission Concepts

• Cloud avoidance: eg. interference for 
OCO-3, VSWIR spectrometers, etc.

• Planetary Boundary Layer: rare and short-lived

• Non-terrestrial and terrestrial plumes

trajectories

NASA

ESRL NOAA
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Dynamic Targeting: Algorithms

radar

1) Random 2) Greedy Nadir 3) Greedy Lateral

4) Greedy Radar 5) Greedy Window 6) Dynamic Programming
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Simulation Studies: SMICES

• Continuation of previous SMICES work (Swope et al. 2021)
• Storm hunting: collect data of storm clouds 
• 5 cloud classes: most interesting/scarce rainy anvil and convective core
• Data comes from Global Weather Research and Forecasting (GWRF) (Skamarock et al. 2019)
• 2 datasets of high-storm regions, resolution 15 km/pixel:

• Non-tropical (U.S. Eastern Coast): 4,050 km x 29,970 km
• Tropical (Caribbean): 3,120 km x 1,785 km

Non-tropical Tropical

interest
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Simulation Studies: Global

• Global datasets that extend and complement the SMICES study
• Simulate more realistic satellite trajectories of Earth science missions
• 2 studies: storm hunting and cloud avoidance

Storm Hunting: GPM/IMERG Cloud Avoidance: MODIS
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Experiments and Results

Scenario/Dataset Baseline Optimal

SMICES Tropical (storms) 22.65 0.74

SMICES Non Tropical (storms) 3.19 0.84

GPM / IMERG (global storms) 88.45 0.69

MODIS (global clear skies) 2.63 0.79

Average Runtime MacBook Pro 16 HPE Spaceborne 
Computer-2

Qualcomm
Snapdragon 855

GR740/
Sabertooth RAD750

ms/timestep ~0.1 ~0.4 ~20 ~1,500 ~2,800

1. Science return (observed clouds) 2. Lookahead sensitivity analysis

3. Runtimes on flight processors
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Ongoing and Future Work

• Customized policies for regions, seasons

• Explore deep reinforcement learning for DT policies

• Study of pointing with costs use cases (current cases assume electronic steering)

• Additional studies/ data sets for further evaluation; Planetary Boundary Layer

• Investigate ESA OPS SAT and Planet Pelican 2 flight opportunities

ESA Planet Inc.
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Closing Remarks

• Dynamic targeting algorithms use lookahead sensor information to improve primary 
sensor science yield including global (energy, thermal) constraints

• Presented DT heuristic and new optimal DP approach (useful for evaluation purposes)

• Evaluated on 4 different datasets/scenarios: storm hunting and cloud avoidance

• DT methods’ performance is much better than baseline (random), close to optimal

• Greater lookahead improves performance

• DT algorithms are extremely fast and produce results approaching optimal
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• 2 more papers after this summer!
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