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Record-high CO2 emissions from Boreal Fires in 2021 'UMBC
B. Zhang et. al., Science 3 March 2023
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Boreal Wildfire CO2 emissions in 2021 are 25% of global net CO2 emissions.

The Arctic is warming two times faster than the rest of the planet—

The Boreal region has warmed 2°C above pre-industrial levels, while Earth warmed 1.1°C.
Are Boreal wildfires having a positive feedback on climate change?

Are CO2 emissions from Boreal Forest Mega-wildfires trending to a climate tipping point?

“A tipping point is the point at which small changes become significant enough to cause a larger, more
critical change that can be abrupt, irreversible, and lead to cascading effects.
A “Tipping element’’ is used to describe large-scale components of the Earth system that may pass a

tipping point. Lenton et.al., 2011. Wildfires low on list of climate tipping elements
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Boreal Forests @UMBC

World's largest land-based biome The forest biome. UC Berkeley™ = s
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Boreal forests cover 16.6 million km? ; the Amazon forest is 9.9M sq kms.

Arctic boreal heating is undergoing most rapid change on planet since pre-industrial era.( 2° vs 1.19)

Boreal wildfires can accelerate permafrost thaw, expose stored carbon to decompose by soil microbes.

This is gradual but fires can contribute to a nonlinear, abrupt thaw with greater consequences.
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3 €arth Science Technology Office




Wildfire/Climate Feedbacks UMBC
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* Climate change affects global wildfires by increasing the fire season, the size of areas affected by fire. In addition,
droughts and extreme local temperatures are exacerbated by climate change and make wildfires more likely.

* Climate change causes winters to become shorter and weather becomes drier and windier, leading to more intense
fires occurring across larger areas.

* Savannahs and crops replace burned areas with higher albedos (solar reflectance) increasing surface warming and
droughts. (Charney et. al., Effects of Albedo Change on Droughts, 1977)

* Forests absorb 30% of the net CO2 emitted to the atmosphere. Boreal Forests fires emitted ~ 10% of net CO2
emissions yearly from 2000-2020. In 2021, B. Zheng et. al., measured ~24% net CO2 emissions.

* Amazon facing 2 climate tipping points when 4° C change or 40% deforestation, (C. Nobre et. al., 1990, 2007, 2016,
2022). Deforestation in Amazon has been near constant past 5 years.

* Boreal fires have been increasing at rate of ~6%/year over the past 15years almost doubling mean CO2 emissions.

* 'What if’ Boreal forest fires regularly emitted ~25% of net CO2 emissions and burnt ~25% of forest areas.

Can satellite informed Al based Boreal Wildfire Digital Twins provide reliable early warnings of a
Boreal biome tipping point?
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AI/ML Wildfire Digital Twin Forecasts for 2021 and beyond...
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The following are preliminary results from Works-in-Progress:

* Employing 5 distinct monthly Boreal Wildfire CO2 emission data sets;
GFEDv4.1s MODIS & VIIRS (ORNL/DAAC)
FINN 2.5 MODIS & VIIRS, (NCAR)
MOPPIT v2 CO,
ERAS-Land & ERAS

* Implementing 3 AI/MI global models
Wavelet Neural Operators (IIT-2-D) -> 3-D + Attention
FourCastNet (Nvidia)
Resnet, etc.
UNet with SWIN Transformer (Pangu)?

e Conducting 3 dynamic physical global simulations.
CESM2-CMIP6, Shared Socioeconomic Pathways (SSP):
NUWREF/ SFire BONA-FINN v2.5,

NUWRF/CHEM/SFire BOAS-FINN v2.5,
Implementing Nvidia Al Digital Twin S/W on NCCS ADAPT

ESTO
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FINN2.5 and not GFED4.1s?

Need to explain why B. Zheng yearly data set is consistent with
FINN2.5 and GFED 4.1s 2002 -2020 but differs in 2021 only with U MBC

AN HONORS UNIVERSITY
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T. Tripura, S. Chakraborty, Sci.Direct 2023

Wavelet Neural Operator Architecture UMBC
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(a) [lustration of Wavelet Neural Operator (WNO) architecture. First lift the inputs to a higher dimension by a local transformation P( ). Then pass
the lifted inputs to a series of wavelet kernel integral layer. Transform back the final output of the wavelet integral layer using a local transformation
Q( ). Activation of output of Q( ) provides solution u(x).

(b) Example of WNO with one wavelet kernel integral layer. The inputs contain the initial parameters and space information. The local transformations
P( ) and Q( ) are shallow fully connected neural networks. Output of P( ) is fed to the wavelet integral layer. The integral layer consists of two
separate branches. (i) Performs wavelet decomposition of inputs followed by parameterization of integral kernel. (ii) A convolution neural network
(CNN) with kernel size 12 is constructed. The outputs of the two branches are then summed and activations are performed. Then the outputs are passed
through the transformation Q( ), which provides the target solution u(x). In similar manner, a WNO with arbitrary number of wavelet integral layers
can be be constructed.

https://github.com/csccm-

itd/WNO GET@
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Rationale for AI/ML Annual and Decadal Inferences (N U MBC
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We test the Wavelet Neural Operator for Data Driven Image Mapping

[ 1C: the input parameters a(x. ) € A | | The output function u(x,t) €U
a : @
£ 7
Transformation:
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@ A Yearly Prediction of 2m Temperature '

UMBC
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CESM2 Model Component Configuration 'UMBC

AN HONORS UNIVERSITY

CAM6 / WACCM6

Land Biogeochemistry Atmosphere Land Modeling

Coupler Sea Ice
CIMES CICES

Surface Waves

ww3
Marine Biogeochemistry
MARBL Lawrence et al., 2019
CO2, HO, | i | Evaporation,
EAIbedo; T s i Transpiration
: Long Sensible Latent

Sonkghe Wave Heat Heat

Atmosphere g

The Community Atmosphere Model Version 6 (CAM6) uses the Finite Volume (FV) _\( _ _ _

dynamical core »

Ocean :

Parallel Ocean Program Version 2

Land

The Community Land Model Version 5 (CLM5)

= ESTO

€arth Science Technology Office



CESM2 Model Simulations
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Two monthly CESM2 runs started for 4 years each with the latest model configuration to
understand the climate feedback/ tipping points:

1. Performing sensitivity experiments with CESM 2 (some of the set ups already use
satellite phenology for land model initialization)

2. We use SSP experimental setup for future projections
3. Can study similar processes in both low and high-resolution runs.

The SSPs (Shared Socioeconomic Pathways) describe alternative evolutions
of the future society in the absence of climate change or climate policy.

SSPs 1 and 5 envision relatively optimistic trends for human development, with substantial
investments in education and health, rapid economic growth, and well-functioning institutions.

SSPs 3 and 4 envision more pessimistic development trends, with little investment in education
or health, a fast-growing population, and increasing inequalities.

CESM2 includes

NTCFs; namely tropospheric aerosols, tropospheric O3 precursors, and CH4

= ESTO
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Summary
v
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- Boreal Wildfire Emission Emergency

e Carbon dioxide emissions from boreal forest fires have been increasing since at least
the year 2000, reaching a new high in 2021, Zheng et al. report. ...... The increasing
number of extreme wildfires that is accompanying global warming presents a real
challenge to global climate change mitigation efforts. —HJS

(H.J.S. 1s a Senior James Martin Fellow at Oxford University.)

*  Earth future climate might or might not have a domino like succession of tipping
points that turns the system into a hothouse after an uncertain number of centuries. Sea
level rise of 70m and extremes of surface storminess lieing well outside of human
experience. Such worst-case scenarios are highly speculative. But they cannot be ruled
out with complete confidence in the present state of climate science and climate
modeling.

--Michael Mclntyre 1s Professor Emeritus U Cambridge UK and Fellow Royal Society

ESTO
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Thank You

For more questions contact: halem@umbc.edu
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5 level Wavelet 2-D Decomposition UMBC
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Proposed Algorithm (Input: Image I from the dataset)

(1) Read image (I) as LLO

(@) fori=1to5

3) (LLi, LHi, HLi, HHi) = two-dimensional wavelet decomp(LL(i—1)).

(4) Hi = Histogram (LLi)

5) Obtaln concatenated histogram of size 256 A~ 5, H by concatenating five

histograms (H1, H2, H3, H4 and H5) obtained in Step (4).

(6) Compute feature vector fi (of size 256 A~ 1) = Probabilistic principal component analysis (H, 1)
(7) Input the feature vector fi as obtained in step (6) into a KNN or ANN model for

classification of images.

- L
Low pass filter 1] 1
Low pass filter 2] LH
- High pass filter 1] 2
Convolution
fln] Convolution
" ELL
Low pass filter 1] !
High pass filter 2] HH.
High pass filter 1] !
Convolution

Convolution

FIGURE 1: Extraction of 2D DWT components.
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AMAZON Forest Area
West Coast of USA
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Why does the B. Zheng yearly data set differ from yearly FINN
and GFED 4.1s data. ' UMBC
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> FINNV2.5 Boreal Forest
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Wavelet Decomposition

©UMBC
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The integral wavelet transform is the integral transform defined as

Wosl@o) = — [ v (252) r@)a=
The wavelet coefficients cj; are then given by
e = [Wy fl (277, k277)

Here, a = 277 is called the binary dilation or dyadic dilation, and b = k27 is the binary or

dyadic position.
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Global Forest Loss @UMBC
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The world has lost one-third of its forest since the last ice age

71% Ocean

36.1 billion ha

19% Barren land |10% Glaciers
p 1.5 bn hectares
2.8 billion ha 1.4bn ha of which

This includes the world's deserts, salt | " is the land area
flats, of i

Habitable land
10,000 years

42% Wild grassland & shrubs E‘{» Freshwater
before present

4.6 billion hectares akes and rivers

5,000 years

before present

44% Wild grassland & shrubs I
4.8 billion hectares

1 billion hectares is equal
to an area the size of the USA.

1700 38% Wild grassland & shrubsI

4.2 billion hecares

1800

36% Wild grassland & shrubs
3.9 billion hectares

The expansion of agriculture led to

. 27% Wild grassland the replacement of forests as well
1900 & shrubs as wild grasslands.
3 billion hectares

12%

1950 1.4bn ha

13%

2000 1.64bn ha

14%

2018 1.74bn ha

. , ' ; - ' 1% Urb d built-up land
One-third of the world’s forests J Almost half of the world’s habitable This in'élu?jgsigttlerﬂénts‘i‘r’md?ﬂrastructure

have been lost - half of this land is used for agriculture. 150m hectares
occurred in the last century - 77% for livestock (grazing + crops for animal feed)
- 23% for crops for human food.

Data sources: Forests data from UN Food and Agriculture Organization (FAO); and Williams, M. (2003). Deforesting the earth: from prehistory to global crisis.
Agriculture data post-1250 from UN FAO; pre-1950 data from The History Database of the Global Environment (HYDE

OurWorldinData.org — Research and data to make progress against the world'’s largest problems. Licensed under CC-BY by the author Hannah Ritchie.

S0

20 €arth Science Technology Office




Growth of Non-Tropical Deforestation ' UMBC
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Global tree cover loss, 2001-2020
Data source: Hansen / WRI 2021
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Hectares loss due to wildfires for the tropics and extra tropics in the 21 century.

2001 -2020 Tropical 7M — 13M, Non Tropical 7M — 14M Total Loss 14M Hectares (38 M Acres)
Global CO2 from fires is ~2 GTgC/yr. (GFED4.1s)

Global CO2 from fossil fuels and land use change is ~11GTgClyr.

(Hansen, 2021 UMD)

ESTO
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Some Boreal Forest Facts UMBC
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Boreal forests cover ~16.6 M km? across the circumpolar region; Amazon 9.9 M km?
BF contains approximately two-thirds of global forest carbon.
Boreal wildfires are accelerating the release of carbon stored in these ecosystems.

Boreal biome temperatures rising at twice the global average rate (2°C vs 1.1°C)

Gross

08
I

06
I

Emissions (Gt CO/year)
04

1 Historical 1 1 Modern 11 Future 1
! 1960—-1979 L ! 2000—2019 | | 2021—2050 L

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

Observed (1960-2019) and Projected (2020-2050) gross emissions from boreal North America.

Dark brown Alaska and light brown Canada. Linear est. 0.5+/-0.2 Gt CO2/yr
ESTO

Phillips et. al., Sci. Adv. 8 (2022)
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Mitigating AI/ML challenges in predicting tipping points UMBC
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* Predicting a tipping point of a single time series (CO2) based solely on prior observations with
AI/ML models or statistical and/or physical based models is a daunting challenge, if not
impossible, without additional information such as physical or chemical inferred constraints.

* We assume access to multiple observational global yearly data sets from satellite data systems,
one of which includes an outlier > 3 sigma std. deviation implying a potential transition point.

* Data from satellites have been shown to model fire spread comparable to dynamic
parametrizations . (Lassman et.al., 2023)

* We employ a dynamical physical ensembles model to generate simulated time series forced
by the alternative observational systems for predicting the transition point and beyond.

* We present preliminary test results of a unique data driven sequential approach to conducting
Machine Learning Simulated Climate Predictions over multiple years or decades.

*  We plan to apply a physics informed coupled system to using Al yearly forecasts with backward
propagation with derived CESM?2 variables to constrain the AI model predictions.

* We deal with the trustworthiness of AI/ML models and physical observations by implementing

multiple ML genres trained with multiple sources of observational data sets.
ESTO

23 €arth Science Technology Office




OOOOOOOOOOOOOOOOOO

Regression fit from 2007
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