

# **Distributed Spacecraft with Heuristic Intelligence to Enable Logistical Decisions for Global Navigation Satellite System Reflectometry (GNSS-R) of Wildfires**

Presenter: Vinay Ravindra<sup>[1][2]</sup> vinay.ravindra@nasa.gov

**Team:** Sreeja Roy Singh<sup>[1][2]</sup> (PI), Mahta Moghaddam<sup>[3]</sup>, Kurtis Nelson<sup>[4]</sup>, Richard Levinson<sup>[1]</sup>, Amer Melebari<sup>[3]</sup>, Archana Kannan<sup>[3]</sup>

- 1. NASA Ames Research Center, Moffett Field, CA
- 2. Bay Area Environmental Research Institute, Moffett Field, CA
- 3. University of Southern California, Los Angeles, CA
- 4. USGS EROS Center, Sioux Falls, SD





### **Adaptive, Intelligent and Responsive New Observing Strategy (AIR NOS) for Wildfires**

## *Adaptive*

Science drivers dictating observations, based on previous observations

- Geophysical retrievals
- Data assimilation into NWP
- Value framework, forecast reporter

## *Intelligent*

Efficient resource utilization using AI

• Planning, orbit/coverage calculations, satellite sub-system modeling, downlink data prioritization

# *Responsive*

Time of event to delivery of report

Use of only NRT data, cognizance of processing times, sync of operations

2023 Earth Science Technology Forum (ESTF2023)





## **Global Navigation Satellite Systems Reflectometry (GNSS-R)**

- L-band (microwave) observations, can penetrate clouds, smoke
- Observations of specular reflections => complimentary, **unique data** compared to backscatter (SAR), radiances (radiometer)
- Passive bistatic radar => small form factor of satellites => numerous distributed satellites => **high temporal sampling**
	- NASA Cyclone Global Navigation Satellite System (CYGNSS) mission
- Has demonstrated scientific retrieval of surface, including wind speed over ocean, and soil moisture and flooding over land.



*Fig: GNSS-R imaging geometry*

Rose, Randy, Scott Gleason, and Chris Ruf. "The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications." *Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014*. Vol. 9240. SPIE, 2014.



*Fig: Delay Doppler Map (DDM)*





*Adaptation of scientific and technological benefits offered by GNSS-R to the wildfire application.* 

# **Pre-fire mission**

Prioritize observations over areas where there is greater chances of fire.

- France Chance of USGS Fire Danger maps as science<br>driver<br>Retrieve from soil moisture derived from<br>(uncompressed) GNSS-R<br>Feedback to refine fire-danger predictions driver
- Retrieve from soil moisture derived from (uncompressed) GNSS-R
- Feedback to refine fire-danger predictions

# **Active fire mission**

- Prioritize fast delivery of observations at active fire area
- Retrieve burnt area locations from GNSS-R
- Assimilate into WRF-SFIRE

# **Default Mission**

• Model of 'nominal' mission operations

Designation of the designation of Active Wildfire Mission **Wildfire Detected** Activate region-specific Active-fire sim driven adaptive sensing, <24 hr data latency, Response time 6-30hrs

> *Fig: Simultaneous execution of multiple missions*





# **Key proposed innovations**



2023 Earth Science Technology Forum (ESTF2023)

**Earth Science Technology Office** 



*Independent development of components of the proposed adaptive sensing framework*

- Ø Enhancing USGS Fire Danger product with GNSS-R (CYGNSS) derived soil moisture
	- $\triangleright$  Goal: Improved Fire Danger by adjusting Fuel Moisture with observed data
- $\triangleright$  Exploration of physics-based and ML-based detection of 'burntarea' with GNSS-R (CYGNSS) Delay Doppler Maps
	- $\triangleright$  Goal: High cadence 'burnt-area' detections during active fire
- Ø Modeling & Intelligent tasking algorithm development & simulated tests with CYGNSS as example
	- $\triangleright$  Goal: Efficient use of satellite resources for maximizing science value gathering with low latency





- USGS Fire Danger Forecasting produces 7-day forecast products for fire potential index, large fire probability, and fire spread probability.
- Utilizes a combination of satellitederived vegetation indices, various biogeophysical variables, and weather information.
- Modify the nominal workflow of calculating FPI to consider observed **soil moisture anomalies**
- 10hr FM term is adjusted by the anomaly term











# **Enhanced Fire Danger product**

products used for adjustment

#### *Validation*

- Three test cases from MTBS record:
	- Vivian Fire 11825 acres, ignition 8/20/2019
	- Game Ranch Fire 3022 acres, ignition 7/13/2020
	- Gate 5 Fire 11457 acres, ignition 7/14/2020
- Adjusted WFPI is **higher at locations which later caught fire**
	-



Fig: Grayscale image of operational and adjusted WFPI *(unit-less number that ranges from 0 to 150)*



• Mean difference is +13 *Fig: Histogram of the adjustment at the test events*

*Next Steps:* Incorporation of quality checks and testing of with more past fires.





### *Physics based detection*

•Improved geometric optics with topography (IGOT) model compute GNSS-R DDM

•Retrieve vegetation parameters, by matching forward-model (IGOT) output with actual observation.

•Change of vegetation characteristics between DDMs before the fire and after is used to for detection.

•SMAP is used for surface soil moisture.



*Fig: Physics based retrieval*

Optimize to find vegetation params of the IGOT model which produce a matching DDM



2023 Earth Science Technology Forum (ESTF2023)

**Earth Science Technology Office** 



Los Angeles

Test case: *Blue Ridge fire*

- Duration: Oct 26, 2020 Nov 7, 2020 (11 days)
- Burned area: 13,964 Acres

**Blue Ridge** 



Good matching between CYGNSS and forward model specular point reflectivity [RMSE: 0.5 dB]

Fire perimeter





*Next Step:* Retrieval of *both* Soil Moisture &Veg params with *multiple* DDMs.





#### *ML based detection*

### •Random Forest Model

#### *Inputs*

True label • CYGNSS DDM: Specular point incidence angle, SNR, Reflectivity of specular point

### Ancillary data

- SRTM: Elevation, Slope, Aspect
- SMAP: Soil Moisture, Vegetation Water Content, Surface Temperature, Precipitation

### *Truth data*

Overlapping dataset created with:

- Landsat Collection 2 Level-3 Burned Area Science Product,
- MODIS Burned Area,
- ESA CCI Burned Area.



Test case: Blue Ridge Fire

#### *Train Confusion Matrix Test Confusion Matrix*



- The burned area data is highly imbalanced.
- Good accuracy and F1 score improvement with important features (Reflectivity, SNR, incidence angle, Soil moisture, VWC, surface temperature)

*Next Work:* Explore more locations with less complex topography.





# 12

# *While LEO small satellites enable distributed, high-temporal sampling, they are highly constrained*

• Onboard data, downlink rate, power, re-orientation speed, etc.

### *Numerous options*

• Observation modes, Selection of target, Downlink priority

## *Multiple objectives*

- How to balance priorities of Prefire, Active-fire, Default missions?
- Different missions shall have different
	- Pre-fire: Data latencies can be relaxed
	- Active-fire: Data latency is critical

#### Some of the agility features



*Table: Operational modes of observation available on CYGNSS*



*Fig: Prioritized downlink from onboard data buffer*

**Earth Science Technology Office** 

*Each choice comes with an associated reward/ cost which can be modeled with satellite orbit, subsystem (data, power) dynamics. Coupled with intelligent tasking, we can operate efficiently.* 



*Monte Carlo Tree Search (MCTS), Coulom 2006*

- •First algorithm to beat a human champion in the game 'Go'.
- •Used by Tesla cars to avoid collisions
- •Good for extremely large search spaces (decision spaces)
- •Integrates Planning with Reinforcement Learning (RL)
- •Explores search spaces using Monte Carlo simulations ("rollouts")
- •Collects outcomes from each rollout to update reinforcement learning statistics
- •Each rollout is a training case for reinforcement learning
	- Keeps statistics on *expected reward* for different choices
- •Search involves balancing choices between *Exploration* vs. *Exploitation*
	- Exploration: Prefer new choices *which have not yet been simulated*
	- Exploitation: Prefer choices which worked best in prior simulations (highest expected reward based on RL) Feature important for

•"Anytime Algorithm"

- Planning can be interrupted at "any time" and a valid solution will be returned responsive missions.
- More planning time is guaranteed to monotonically improve solution

•Specialized D-SHIELD adaptations to optimize satellite observation planning



2023 Earth Science Technology Forum (ESTF2023)

*Rémi Coulom (2006). "Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search". Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May 29–31, 2006.*



### Simulation Scenario:

### Pre-Fire Mission (1<sup>st</sup> Aug 2020, 1 day)

- 1 CYGNSS satellite
- 3 ground-stations @ HI, Chile & W. Aus.
- RawIF mode (high data volume) observation over locations of high fire danger
- FIFO data buffer

#### *Objective formulation*

Maximize the cumulative sum of WLFPs of the imaged & downlinked locations.



2023 Earth Science Technology Forum (ESTF2023)

**Earth Science Technology Office** 



15

### *Orbits Access*

• GNSS-R specular coverage calculation with multiple GNSS satellites

*Data*

• Max capacity **~ 5.7 Gb,** RawIF mode data rate = **96.22 Mb/s,** Downlink rate = **4 Mb/s** 

*Power*

• Max charge: 86.4 Watt-hours, Avg Solar power in: **70 W,** Bus + sensor power consumption: **38.3 W,** Downlink power consumption: **22.6 W,**  Minimum charge: 55% of max charge

Constrained Onboard data storage, downlink rate, and available power





#### **D-SHIELD Fire search space is immense**

For each satellite in a 24-hour period:

#### ~ **10,000 decision variables**

Each decision variable represents 1 second when the planner must make a **binary choice**:

- Make an observation or not
- Downlink data or not

#### The # of states to explore is:



(Google Exponent Calculator)

# *Snapshots of the Best Plan after 200k rollouts (15hr process time)*

**Idling**



### **Downlink**



time: 3074, RAW, bat. 99.99 %, storage: 2694.076, gpCount: 0, score: 289.817, targets: [24688, 25019, 27928, 31294, 33800, 34085, 35231, 42057, 42287] time: 3075, IDL, bat. 99.99 % time: 3076, RAW, bat. 99.99 %, storage: 2790.293, gpCount: 0, score: 305.391, targets: [24689, 25020, 27929, 31001, 31295, 31593, 31870, 33525, 34080, 35232, 35502, 35502, 3570, 35770] time: 3077, RAW, bat. 99.99 %, storage: 2886.51, gpCount: 0, score: 318.177, targets: [25021, 27606, 31296, 34086, 34354, 35503, 42059, 42289] time: 3078, IDL, bat. 99.99 %



16



## *Animation of Best Plan after 200k rollouts (15hr process time)*





*Fig: USGS WFPI-based Large Fire Probability (WLFP) as science driver*





# **Intelligent Tasking & Modeling**

# **Analysis**

- Performance seems to saturate at  $\sim$  40K rollouts
- Still exploring only, a tiny fraction of the search space
	- Max learning depth of 472 (after 200k rollouts) is only the first 472 decisions out of ~10,000
- **Limited storage capacity** and downlink opportunities constrain how many images may be taken

#### *Next Steps:* More analysis. Multiple satellites, Active fire mission.

2023 Earth Science Technology Forum (ESTF2023)



18

**Earth Science Technology Office** 



- Near real time retrievals are challenging with limitations of auxiliary data which can be used.
- We shall explore GNSS-R retrievals from commercial sources such as Spire, available through the NASA Commercial Smallsat Data Acquisition (CSDA) program.
- We shall start work on incorporating the GNSS-R derived data with Active fire simulation models.
- Continue to keep focus on minimizing the responsive time of the system and evaluate the tradeoff with the performance.

*Questions? vinay.ravindra@nasa.gov*





# BACKUP SLIDES





# **Intelligent Tasking & Modeling**



**Earth Science Technology Office** 



# **Intelligent Tasking & Modeling**



**Earth Science Technology Office**