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Importance of Wildfire Observation

• Wildfire occurrences have been increasing for the 
past decades, leaving devastating traces across the 
globe.
• Example: 2018 wildfires in California: $148.5 Bn[1]

• Proper resource management is crucial in the fight 
against wildfires.

• Accurate detection is the first step in proper 
wildfire management.

• Proper machine learning techniques can help 
discover  remote sensing-based information that 
can help us better characterize wildfires.

Credit: USGS[1] Wang et al., “Economic footprint of California wildfires in 2018,” Nature Sustainability, 4, 252-260 (2021)
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Wildfires are stochas7c in nature!

• Like many other natural processes, wildfires are stochasBc.
• Wildfire simulaBons are classified in two categories:
• Determinis)c: Assuming wildfire processes are fully 

resolved.
• Provides the same outcome every 1me the model is run for a single 

wildfire event.
• Does not account for variability in observa1ons.

• Stochas)c: Incorporates the variability of observaBon.
• Provides different scenarios every 1me the model is run for a single 

wildfire event.
• Provides a comprehensive sta1s1cal understanding for the variability 

over 𝑁 runs.

Credit: Kevin Maddrey

• Thus, deterministic approaches are not optimal for stochastic processes (e.g. 
wildfire).
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Uncertainty in Wildfire Observations

• Uncertainty analysis enables the assessment of reliability and confidence in research 
results.

• Uncertainty analysis aids in decision-making processes related to resource 
management, policy development, and risk assessment.

• It helps quantify and communicate the uncertainties associated with observations, 
measurements, and predictions in Earth science.

• However, uncertainty analysis is not cheap (requires extensive computational and 
design resources).

• Most uncertainty analysis methods are not designed to run “what-if” scenarios in a 
low-cost and comprehensive manner.
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Dataset

• We used the observaBons of NASA’s Terra and Aqua MODIS for
• Land/Cloud/Aerosols Boundaries
• Land/Cloud/Aerosols Proper3es

• We collected the wildfire mask data from NASA’s Visible Infrared Imaging Radiometer Suite 
(VIIRS) onboard the Suomi NaBonal Polar-OrbiBng Partnership (Suomi NPP).

• We collected 10,000 wildfire samples (with overlapping incidents) over CONUS for the Bme 
range of 2018-2020.

• Normalized Difference VegitaBon Index (NDVI) is also calculated and included as proxy of 
vegetaBon health.

• We included a deviaBon from mean NDVI accounBng for sudden shi\s in NDVI in a region.
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Discrimina7ve vs. Genera7ve

Discriminative modeling: 

• In discriminative modeling, we aim to learn a model that discriminates 
(i.e. predicts) given the inputs. (In probability terms: 𝑝 𝑦	 𝑋))

Generative modeling: 

• Generative modeling aims to solve a more general problem. It aims to 
learn joint distribution over all variables. 
(In probability terms:	𝑝(𝑦, 𝑋) or	𝑝 𝑦	 𝑋)	𝑝(𝑋))
• A generative model simulates how the data is generated in the real world.
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Generative Modeling based on Statistical Inference

Statistical Inference is a learning scheme in which we learn about an unobserved state based on 
our observations.

smiling
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Variational Inference

VariaBonal Inference suggests that instead of going through all the samples, we assume 
a distribuBon (e.g. Gaussian) from distribuBon family and instead of finding the enBre 
distribuBon (hard), find the distribuBon parameters (easier).

𝑝 𝑥 = 	%𝑝 𝑥	 𝑧)	𝑝 𝑧 	𝑑𝑧

How to measure the closeness of distribuBons?
We use a metric called Kullback-Leibler Divergence.
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Probabilis7c U-Net – Training Mode
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Probabilistic U-Net – Inference Mode
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Quantum Advantage

• Probabilistic U-NET’s performance depend on quality of latent space samples.
• We improved it by relaxing the variation inference assumption (i.e. latent space is a 

Multivariate Gaussian distribution).
• In order to relax the posterior assumption, we can replace the posterior latent space 

with an iterative process such as Restricted Boltzmann Machine (RBM).
• The RBM allows parallel Gibbs sampling which results in more accurate prior 

characterization.
• This way we are joining the best of both worlds (Variational Inference & MCMC) to 

generate more accurate latent samples and thus, more realistic scenarios for wildfire 
detection.
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Visual Comparison
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Statistical Comparison
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What-if Scenarios

Sparse unhealthy Vegetation

Very unhealthy/No VegetationNormal Vegetation

Healthy Vegetation
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Highlights

• Generative machine learning can improve our understanding of wildfire processes and offer a 
promising approach for wildfire detection and uncertainty quantification.

• The proposed approach demonstrates the ability to generate stochastic wildfire detections, 
enabling comprehensive uncertainty quantification for individual and collective events.

• Incorporating uncertainty analysis in wildfire detection enhances decision-making capabilities 
for authorities, aiding in effective mitigation and prevention strategies.

• The findings highlight the potential of generative machine learning in advancing wildfire 
detection and decision support systems, contributing to improved wildfire management and 
public safety.
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Thank you very much for your attention!
Questions?

Ata Akbari Asanjan
ata.akbariasanjan@nasa.gov
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Generative Modeling based on Probabilistic Inference

Bayes rule:

𝑝 𝑧	 𝑥) =
𝑝 𝑥	 𝑧)	𝑝(𝑧)

𝑝(𝑥)
=
𝑝(𝑥, 𝑧)	
𝑝(𝑥)

• 𝑝(𝑥) is data distribution or Evidence. 
• (In discriminative models, we rather focus on conditional probability 𝑝(𝑦|𝑥) and neglect the unconditional 

probability 𝑝 𝑥 .

• 𝑝(𝑧) is the prior distribution. 
• 𝑝 𝑥	 𝑧) is the likelihood. 
• 𝑝 𝑧	 𝑥) is posterior distribution. 
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Probabilis5c Inference – Unsupervised Form

Bayes rule:

𝑝 𝑧	 𝑥) =
𝑝 𝑥	 𝑧)	𝑝(𝑧)

𝑝(𝑥)
=
𝑝(𝑥, 𝑧)	
𝑝(𝑥)

In unsupervised variational inference we assume a family of distributions for the prior and force 
the model to learn the best distribution parameters that match the data.

In
pu

t d
at

a,
 𝑋

Encoder Latent
Space, 𝑍 Decoder

Re
co

ns
tr

uc
te

d 
da

ta
, 
; 𝑋

𝑝 𝑧 𝑥 𝑝 𝑥	 𝑧)

𝑝(𝑧)

𝑝(𝑥)



20

Probabilistic Inference – Supervised Form
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Probabilistic Inference – Supervised Form

• Probabilistic U-Net is a great approach for capturing variations in a supervised 
fashion.

• However, it can be further improved by relaxing the variation inference assumption 
(i.e. latent space is a Multivariate Gaussian distribution).

• In order to relax the prior assumption, we can replace the prior latent space with an 
iterative process such as Restricted Boltzmann Machine (RBM).

• The RBM allows parallel Gibbs sampling which results in more accurate prior 
characterization.

• This way we are joining the best of both worlds (Variational Inference & MCMC) to 
generate more accurate latent samples and thus, more realistic scenarios for wildfire 
detection.
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Sta5s5cal Inference

Bayes rule:

𝑝 𝑧	 𝑥) =
𝑝 𝑥	 𝑧)	𝑝(𝑧)

𝑝(𝑥)

• Solving the Bayesian inference in the previous slide is often hard close to not possible.
• This becomes worst with larger dimensionality in data (e.g. Image, time series).

𝑝 𝑥 = 	%𝑝 𝑥	 𝑧)	𝑝 𝑧 	𝑑𝑧

Solutions:
1. Variational Inference: Moderate accuracy, Fast
2. Markov Chain Monte Carlo: Good accuracy, Very slow
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Monte Carlo Markov Chain

• MCMC is a generic method of sampling from a high-dimensional probability 
distribution.

• By sampling, we gain better knowledge of the entire probability distribution 
landscape.

• As we sample more from a distribution,
we learn more about the distribution!
• MCMC includes many variations
• Metropolis-Hasting: Uses proposal density 
& acceptance/rejection method for new samples.
• Gibbs: Uses conditional distributions for new samples. (Good for complex high-dimensional target 

distributions)
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Gibbs Sampling

• Gibbs sampling breaks down the sampling process of a complex high-dimensional 
target distribution, into simpler, easy-to-sample conditional distributions.
• Example: Imagine we have a 𝑁-d target distribution

𝑃(𝑥=, 𝑥%, 𝑥>, … , 𝑥?)
• Drawing samples from this distribution is hard if we don’t have the joint probability function.
• Instead, we freeze all but one dimension and calculate a conditional probability. e.g.;

𝑃 𝑥=	 𝑥%, 𝑥>, … , 𝑥?)
• Then we start from a random location, update each dimension based on other given dimensions 

and conditional probability
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Gibbs Sampling in the form of ML

• Gibbs sampling can be implemented as a machine learning model.
• Imagine we have two variables 𝑋 and 𝑌.
• In order to sample from the joint P(𝑋, 𝑌) distribuBon, all we need is to have P 𝑋	 𝑌) 

and P Y	 𝑋).
• We can define a model that gives the condiBonal distribuBons: Restricted Boltzmann 

Machine (RBM)!
• RBM learns condiBonal distribuBons via negaBve log-likelihood.
• Gibbs sampler uses condiBonal distribuBons to refine samples.
• This mechanism learns a Boltzmann distribuBon of 𝑋 and 𝑌.

𝑃 𝑋, 𝑌 =
𝑒@A(B)

∑C,E 𝑒@A(B,F)
𝑌X
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RBM: An energy-based model

• This mechanism learns a Boltzmann distribution of 𝑋.

𝑃 𝑋 = 	3
E

𝑒@A(B,F)

∑C,E 𝑒@A(B,F)
 

• Energy term 𝐸(𝑥, 𝑦) can be represented by
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Combining RBM with Probabilis5c U-Net – Training mode
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Combining RBM with Probabilis5c U-Net – Inference Mode
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Visual Results
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Performance Metrics

U-Net Prob. U-Net
(Gaussian)

Prob. U-Net 
(Bernoulli)

Prob. U-Net
(RBM)

Precision 0.536 0.431 0.235 0.654

Recall 0.987 0.955 0.752 0.473

F1 score 0.695 0.594 0.358 0.549

Jaccard score 0.532 0.422 0.318 0.378
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Advantages of the proposed approach

• Probabilistic U-Net with Boltzmann latent space is more generalized than its alike with 
Gaussian latent.

• Discrete latent space will help the model in efficient learning of latent configurations.
• RBM acts as a connection door between the classical and quantum computation realms.

• Question: How RBM connects classical and quantum computations?
• RBM uses 𝑒!"($) to define probability, thus;

𝐸(𝑥) ∝
1
𝑝

• Because of this property, we can look for lower energy to find higher probability samples.
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Quantum Computation

• Quantum computing is a rapidly emerging technology based on quantum mechanics.
• Multiple applications, such as optimization and sampling, have been introduced and are 

expected to surpass the classical computers’ performances.
• Quantum annealing is a proposed optimization method for finding the lowest energy (best 

answer).
• We start from an initial Hamiltonian state and slowly move toward problem Hamiltonian 

(solution).
• Theoretically, quantum computer can find the lowest energy more effectively due to 

tunneling effect. Energy Landscape
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Bridge between Quantum  and Classical Computation

• We can use this property in sampling to find the best Boltzmann distribuBon.
• We do MCMC in Energy landscape to find the lowest energy point. That is equivalent to doing 

MCMC on Boltzmann distribuBon.
• This approach is expected to perform beeer because of Quantum computer’s effecBve and 

fast sampling. 
• The results are expected to be more accurate and simultaneous.

Energy Landscape Probability Distribution


