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Importance of Wildfire Observation

Wildfire occurrences have been increasing for the o L :

past decades, leaving devastating traces across the G ofg::;:;fzg’;‘;g
globe. : -
*  Example: 2018 wildfires in California: $148.5 Bn!] ‘ w p«endfigo’c;‘m.;,
* Proper resource management is crucial in the fight ?Z@.l
against wildfires. o

* Accurate detection is the first step in proper
wildfire management.

* Proper machine learning techniques can help

discover remote sensing-based information that 205
. . R I 2016
can help us better characterize wildfires. %

I 2013

Source: USGS

[1] Wang et al., “Economic footprint of California wildfires in 2018,” Nature Sustainability, 4, 252-260 (2021) Credit: USGS




Wi ildfires are stochastic in nature!

* Like many other natural processes, wildfires are stochastic.
 Wildfire simulations are classified in two categories:

* Deterministic: Assuming wildfire processes are fully
resolved.

. Provides the same outcome every time the model is run for a single
wildfire event. Credit: Kevin Maddrey

. Does not account for variability in observations.

* Stochastic: Incorporates the variability of observation.

. Provides different scenarios every time the model is run for a single
wildfire event.

. Provides a comprehensive statistical understanding for the variability
over N runs.

 Thus, deterministic approaches are not optimal for stochastic processes (e.g.
wildfire).
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Uncertainty in Wildfire Observations

* Uncertainty analysis enables the assessment of reliability and confidence in research
results.

 Uncertainty analysis aids in decision-making processes related to resource
management, policy development, and risk assessment.

* It helps quantify and communicate the uncertainties associated with observations,
measurements, and predictions in Earth science.

 However, uncertainty analysis is not cheap (requires extensive computational and
design resources).

 Most uncertainty analysis methods are not designed to run “what-if” scenarios in a
low-cost and comprehensive manner.
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Dataset

We used the observations of NASA’s Terra and Aqua MODIS for
 Land/Cloud/Aerosols Boundaries
* Land/Cloud/Aerosols Properties

We collected the wildfire mask data from NASA’s Visible Infrared Imaging Radiometer Suite
(VIIRS) onboard the Suomi National Polar-Orbiting Partnership (Suomi NPP).

We collected 10,000 wildfire samples (with overlapping incidents) over CONUS for the time
range of 2018-2020.

Normalized Difference Vegitation Index (NDVI) is also calculated and included as proxy of
vegetation health.

We included a deviation from mean NDVI accounting for sudden shifts in NDVI in a region.




Discriminative vs. Generative

Discriminative modeling:

* Indiscriminative modeling, we aim to learn a model that discriminat
(i.e. predicts) given the inputs. (In probability terms: p(y | X))

Generative modeling:

* Generative modeling aims to solve a more general problem. It aims to L e st
learn joint distribution over all variables. @ :'*: ) o . K
(In probability terms: p(y, X) or p(y | X) p(X)) ."..‘.:'%...:’ o .

« A generative model simulates how the data is generated in the real world. «* <% .

EARTH SCIENCE TECHNOLOGY OFFICE




Generative Modeling based on Statistical Inference

Statistical Inference is a learning scheme in which we learn about an unobserved state based on
our observations.
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Variational Inference

Variational Inference suggests that instead of going through all the samples, we assume
a distribution (e.g. Gaussian) from distribution family and instead of finding the entire

distribution (hard), find the distribution parameters (easier).

p(x) = jp(x | z) p(2) dz

0.20 A

How to measure the closeness of distributions?
0.15 1
We use a metric called Kullback-Leibler Divergence. :
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Probabilistic U-Net — Training Mode
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Probabilistic U-Net — Inference Mode
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Quantum Advantage

* Probabilistic U-NET’s performance depend on quality of latent space samples.

* We improved it by relaxing the variation inference assumption (i.e. latent space is a
Multivariate Gaussian distribution).

 In order to relax the posterior assumption, we can replace the posterior latent space
with an iterative process such as Restricted Boltzmann Machine (RBM).

* The RBM allows parallel Gibbs sampling which results in more accurate prior
characterization.

 This way we are joining the best of both worlds (Variational Inference & MCMC) to
generate more accurate latent samples and thus, more realistic scenarios for wildfire
detection.
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Spatial
Uncertainty Quantification
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Statistical Comparison
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What-if Scenarios

Sparse unhealthy Vegetation

Healthy Vegetation
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Highlights

Generative machine learning can improve our understanding of wildfire processes and offer a
promising approach for wildfire detection and uncertainty quantification.

The proposed approach demonstrates the ability to generate stochastic wildfire detections,
enabling comprehensive uncertainty quantification for individual and collective events.

Incorporating uncertainty analysis in wildfire detection enhances decision-making capabilities
for authorities, aiding in effective mitigation and prevention strategies.

The findings highlight the potential of generative machine learning in advancing wildfire
detection and decision support systems, contributing to improved wildfire management and
public safety.
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Thank you very much for your attention!

Questions?

Ata Akbari Asanjan
ata.akbariasanjan@nasa.gov




Generative Modeling based on Probabilistic Inference

Bayes rule:

_px12)p(@) _pk2)
p(x) p(x)

p(z | x)

* p(x) is data distribution or Evidence.

* (Indiscriminative models, we rather focus on conditional probability p(y|x) and neglect the unconditional
probability p(x).

* p(2) is the prior distribution.
* p(x | z)is the likelihood.
* p(z| x) is posterior distribution.




Probabilistic Inference — Unsupervised Form

Bayes rule:

_pxl2)p@@) _pk.2)

p(z|x) p(x) p(x)

In unsupervised variational inference we assume a family of distributions for the prior and force
the model to learn the best distribution parameters that match the data.

p(z)

Latent
Space, Z

Encoder Decoder

Input data, X
Reconstructed data, X

p(x)




Probabilistic Inference — Supervised Form
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Probabilistic Inference — Supervised Form

* Probabilistic U-Net is a great approach for capturing variations in a supervised
fashion.

* However, it can be further improved by relaxing the variation inference assumption
(i.e. latent space is a Multivariate Gaussian distribution).

* In order to relax the prior assumption, we can replace the prior latent space with an
iterative process such as Restricted Boltzmann Machine (RBM).

e The RBM allows parallel Gibbs sampling which results in more accurate prior
characterization.

 This way we are joining the best of both worlds (Variational Inference & MCMC) to
generate more accurate latent samples and thus, more realistic scenarios for wildfire
detection.
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Statistical Inference

Bayes rule:

_ px12)p(2)
p(x)

p(z | x)

* Solving the Bayesian inference in the previous slide is often hard close to not possible.
* This becomes worst with larger dimensionality in data (e.g. Image, time series).

p(x) = fp(x | z) p(2z) dz

Solutions:

1. Variational Inference: Moderate accuracy, Fast
2. Markov Chain Monte Carlo: Good accuracy, Very slow
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Monte Carlo Markov Chain

 MCMC is a generic method of sampling from a high-dimensional probability
distribution.

e By sampling, we gain better knowledge of the entire probability distribution
landscape.

e As we sample more from a distribution,
we learn more about the distribution!

e MCMC includes many variations
Metropolis-Hasting: Uses proposal density

& acceptance/rejection method for new samples.

e Gibbs: Uses conditional distributions for new samples. (Good for complex high-dimensional target
distributions)
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Gibbs Sampling

* Gibbs sampling breaks down the sampling process of a complex high-dimensional
target distribution, into simpler, easy-to-sample conditional distributions.
Example: Imagine we have a N-d target distribution
P(xq,%x9,X3, .., Xp)
* Drawing samples from this distribution is hard if we don’t have the joint probability function.

* Instead, we freeze all but one dimension and calculate a conditional probability. e.g.;
P(x1 | X2, X3, ...,xN)
 Then we start from a random location, update each dimension based on other given dimensions
and conditional probability
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Gibbs Sampling in the form of ML

 Gibbs sampling can be implemented as a machine learning model.
* Imagine we have two variables X and Y.

* In order to sample from the joint P(X,Y) distribution, all we need is to have P(X | )
and P(Y | X).

 We can define a model that gives the conditional distributions: Restricted Boltzmann
Machine (RBM)!

* RBM learns conditional distributions via negative log-likelihood.
 Gibbs sampler uses conditional distributions to refine samples.

e This mechanism learns a Boltzmann distribution of X and Y.
e—E(x) X Y

ZXYe_E(x’y)

P(X,Y) =
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RBM: An energy-based model

e This mechanism learns a Boltzmann distribution of X.

e—E(X,y)
PO = )

* Energyterm E(x,y) can be represented by

E(x,y) = —Z:xi bi* —Eij]Y —szinWij
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Combining RBM with Probabilistic U-Net — Training mode
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Combining RBM with Probabilistic U-Net — Inference Mode
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Visual Results
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Performance Metrics

U-Net Prob. U-Net Prob. U-Net Prob. U-Net
(Gaussian) (Bernoulli) (RBM)
Precision 0.536 0.431 0.235 0.654
Recall 0.987 0.955 0.752 0.473
F1 score 0.695 0.594 0.358 0.549
Jaccard score 0.532 0.422 0.318 0.378
Precision = % Recall = % i

Fire No Fire

2 X Precision X Recall

F1 score = Fire TP FP

Precision X Recall

Prediction
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Advantages of the proposed approach

Probabilistic U-Net with Boltzmann latent space is more generalized than its alike with
Gaussian latent.

Discrete latent space will help the model in efficient learning of latent configurations.
RBM acts as a connection door between the classical and quantum computation realms.

Question: How RBM connects classical and quantum computations?
«  RBM uses e E®) to define probability, thus;
1
E(x) oc—
p

* Because of this property, we can look for lower energy to find higher probability samples.




Quantum Computation

Quantum computing is a rapidly emerging technology based on quantum mechanics.

Multiple applications, such as optimization and sampling, have been introduced and are
expected to surpass the classical computers’ performances.

Quantum annealing is a proposed optimization method for finding the lowest energy (best
answer).

We start from an initial Hamiltonian state and slowly move toward problem Hamiltonian
(solution).

Theoretically, quantum computer can find the lowest energy more effectively due to
tunneling effect. Energy Landscape
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Bridge between Quantum and Classical Computation

We can use this property in sampling to find the best Boltzmann distribution.

We do MCMC in Energy landscape to find the lowest energy point. That is equivalent to doing
MCMC on Boltzmann distribution.

This approach is expected to perform better because of Quantum computer’s effective and
fast sampling.

The results are expected to be more accurate and simultaneous.

Energy Landscape Probability Distribution e




