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* Low-Low Sat-to-Sat Tracking missions,
like GRACE & GRACE-FO, are vital for
measuring mass transport over the
surface of the Earth

 LL-SST missions like GRACE-FO that use
laser interferometry are technologically
limited by accelerometer accuracy

Science Motivation

Ice sheets, glaciers, underground water
storage, large lakes & rivers, sea level

Laser ranging measures variations in
intersatellite distance due to gravity

Accelerometers account for non-gravitational
motion of the two spacecraft

GPS receivers used for orbit determination

For future Earth gravity field
mapping missions beyond GRACE-FO

Example Earth Science outcome: Mapping
changes in land water storage



* Improved inertial sensing would allow
future missions to take advantage of
iImprovements made by laser
ranging interferometry

* Temporal aliasing models continue to
improve; eventually down to
instrument noise limit

* The S-GRS is based on the ESA-NASA
LISA Pathfinder (2015/16) design with
demonstrated >10%4 improvement
over GRACE-FO

* S-GRS team funded through ESTO IIP
to reach TRL 6 by January 2025

i3 Ccurrent Measurement Systems
Limited by Accelerometers
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el S-GCRS Design Overview

& PSsL

* S-GRS Head (Ball Aerospace)
* Test mass and electrode housing
* Test mass caging mechanism (launch lock)
* Support structure

* Electronics units (Fibertek)

* Charge management system
(developed by UF for LISA)

* TM sensing and actuation electronics
* Control electronics & software
* Power and Caging Unit

e Control software (CrossTrac Eng.)

* Improvements relative to GRACE

* Replace TM grounding wire with UV
photoemission-based charge management

* Larger TM (0.5 kg) and TM-housing gap (~mm)
* Venting to space improves TM environment

* Drag-compensation improves performance
further by reducing test mass actuation noise S-GRS Head

Primary Structure

Ball Aerospace &
Technologies Corp.

Electrode
Housing (EH)

Caging Mechanism
(CM) (2)

Enclosure System



S-GRS
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* Two operational scenarios selected:

* Non-drag-compensated at 500 km altitude (e.g. GRACE-FO)
* Drag-compensated spacecraft at 350 km
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Operated as an accelerometer
based on GRACE-FO flight environment

—other noise terms
- - -capacitive sensing
“1---LRI
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Operated on a drag-compensated spacecraft




* Science data products limited in lowest SH degrees by a
combination of temporal aliasing and accelerometer error
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data products are limited

by temporal aliasing g |
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* S-GRS has the potential £ SV \
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monthly gravity fields
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“"UE S-GRS can Improve Gravity Fields [OX —
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« Community constantly Signal + Error for GRACE gravity solutions

improving quality of - Approximately a 2x improvement with each data release
science through improved % g
modeling of mass
variations and data
processing methods

* As this trend continues,
error can be driven down
to performance of
measurement system

geoid height (mm)

e S-GRS allows for a

'RLO1 ——  Tapleyetal, 2019

potential 10x | R0
' ‘ ' RLO5 —e— —
|mprpvement in quality of gt }
gravity fields as data 0.01 . :
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TM Caging Mechanism
design and testing

Prototype sensing electronics
meets performance requirements
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iy S-GRS Development Highlights —

Charge Management and Metrology Testbed



wed U Torsion Pendulum -
& PSsL damper
* Testbed for precision inertial sensors
* 1 m, 50 um diameter fiber supports cross bar A *
with 4 hollow TMs (rotation — translation)
* Light Al structure reduces needed fiber diameter }

« Capacitive (15 nm/Hz2) + IFO (0.2 nm/Hz?) readouts
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 Torsion

* Test-bed for precision inertial sensors

* 1 m, 50 um diameter fiber supports cross bar

Dendulum

with 4 hollow TMs (rotation — translation)

* Light Al structure reduces needed fiber diameter
« Capacitive (15 nm/Hz2) + IFO (0.2 nm/Hz?) readouts
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UF Torsion Pendulum
& PSsL
* Test-bed for precision inertial sensors

* 1 m, 50 um diameter fiber supports cross bar
with 4 hollow TMs (rotation — translation)

* Light Al structure reduces needed fiber diameter

« Capacitive (15 nm/Hz2) + IFO (0.2 nm/Hz?) readouts
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ey S—-GRS P Task Milestones and Outlook

{& PSsL
 Key Milestones

* TRL 6 Caging Mechanism delivered from Ball to UF for testing Aug 2023
e TRL 6 S-GRS Head delivered from Ball to UF for testing Jan 2024 e
e TRL 6 S-GRS Head achieves TRL 6 May 2024 -
* TRL 6 software delivered from CrossTrac to Fibertek July 2024
* TRL 6 S-GRS Electronics Unit delivered from Fibertek to UF for testing Nov 2024
* TRL 6 S-GRS Electronics Unit achieves TRL 6 Jan 2025

* Charge Management Device reaches TRL 6 by Dec 2023 for Class A/B LISA mission

e Seeking opportunities for an S-GRS flight technology demonstration this decade —
* Looking for partners and a host spacecraft platform
* First opportunity is INVEST 2023
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