

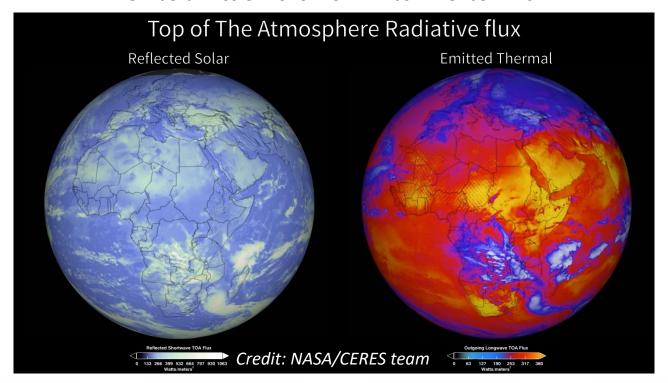
The BABAR-ERI Instrument Benefits, Applicability, and Readiness for Earth Science

Odele Coddington and the BABAR-ERI Team

LASP: Cameron Straatsma, Virginia Drake, Dave Harber, Peter Pilewskie, Sebastian Schmidt, Darren Erickson, Joel Rutkowski, Graham Dean, Paris Buedel, Adalyn Fyhrie, Marc Miller & Julian Gieseler

NIST: Michelle Stephens, Chris Yung, Nathan Tomlin & John Lehman

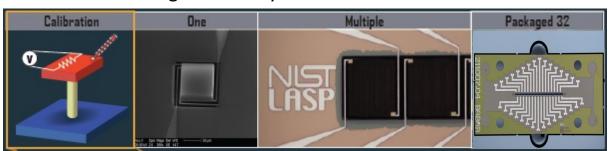
Odele.Coddington@lasp.Colorado.edu



The Earth Radiation Budget (ERB) Record

Broadband radiation budget measurements are the Program of Record for the *detection* and *attribution* of climate change [NASA Decadal Survey, 2017].

NASA/CERES has acquired the daily, global, ERB since 1997. The Libera mission follow-on will commence in 2027.

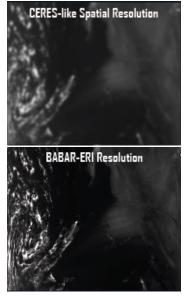


BABAR-ERI

Black Array of Broadband Absolute Radiometers – Earth Radiation Imager Providing <u>key advances</u> in measuring outgoing broadband radiation

32-element array of micromachined silicon, electrical substitution radiometers with high-efficiency broadband carbon nanotube absorber.

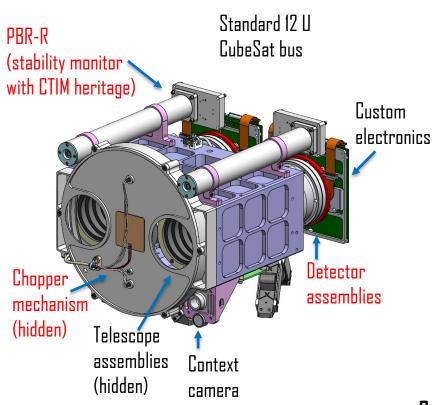
Detection & Attribution



Absolute calibration each pixel • 1 kHz imaging speed • Ambient Temperature
• 1 km footprint imaging

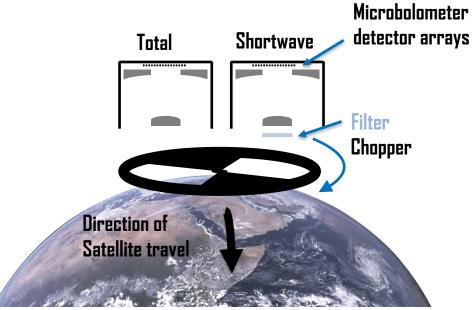
- · Absolute sensors (CTIM heritage) for stability monitoring
 - · Small volume, weight and power

Reduces risk of data gaps by enabling flexible observing and implementation strategies. Degradation tracking/correction from a single platform at the footprint-level.



Basic Instrument Design

A 2019 NASA ESTO Instrument Incubator Program (IIP) award


- Pushbroom Imager - 2 Cassegrain Telescopes

32-element arrays - Electrical Substitution at Each Pixel

Co-registered Footprints
Simultaneous Total and Shortwave Imaging

- Longwave = Total - Shortwave

8" (wide) x 8" (tall) x 9.25" (deep)

^{*} Innovative Components

Requirements & Predicted Performance

The requirements for ERB-science are Radiation Budget Science Working Group criteria.

Instrument Requirements						
Parameters	Field of View	Spectral Range [μm]	Dynamic Range [W/m²/sr]	Noise [W/m²/sr]	Accuracy [%]	Stability [%/year]
Performance	20 km	SW: 0.3-5	SW: 350	1	SW: 1.0	<0.03
		LW: 5-50	LW: 450		LW: 0.5	
		TOT: 0.3-50	TOT: 500		TOT: 0.5	
Predicted Performance	32x1km (binned to 20 km)	SW: 0.3-4	SW: >350	< 0.1*	SW: <1.0**	<0.01 (goal)
		LW: 4->100	LW: >450		LW: <1.0**	
		TOT: 0.2->100	TOT: >500		TOT: <1.0**	

^{*} From a demonstrated noise equivalent power of < 70 pW/ VHz up to 10 Hz equating to noise equivalent radiance of 0.03 W/m²/sr, when coupled with BABAR-ERI telescope and 7-Hz chopper.

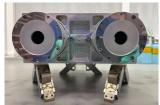
^{**} Accuracy limits are to be determined over the next year of the IIP development.

Status & Schedule

All key technologies are in integration & test.

Integration & Test

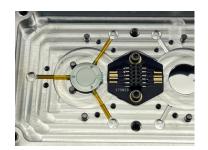
- Chopper Life Test Telescope Alignment
 - Detector Characterization
- Component Calibrations (mirrors, filter, VACNT)

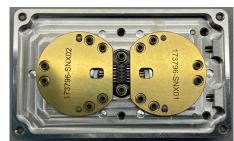


- Blackbody Sources (x2)
- Flight PBR-R detectors (x2)
 - Camera Optical System

Telescope assembly

Front (left) and back (right) of optical bench on bipod struts.

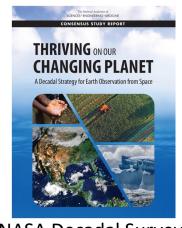

32-element microbolometer ESR



Chopper wheel w/ Singularity paint

Key Technologies at TRL 5, Aug. 2023 Final Calibrations~ Mar. 2024 Complete System at TRL 5, Mar. 2024

PBR-R Detector Engineering Model: 1.5" x 2.5"



Mission Concepts & Science Objectives

Addressing key science objectives that demand enhanced spatial resolution and accuracy in measuring outgoing broadband radiation to reduce uncertainty in future climate warming and climate intervention strategies.

From a Single Instrument...

- Improve the process-level understanding of climate drivers (clouds, aerosols)
 - Reduce the uncertainties in climate forcings & feedbacks
- Pathway to observe impacts of future climate intervention strategies
- Validation of CERES, Libera, MODIS and/or VIIRS
- Flexibility in "targeting" specific Earth-locations (via ground-commanding)

NASA Decadal Survey

...To an Instrument Constellation...

- Increase the information content (spatial resolution, accuracy) of ERB observations
 - Enhance temporal coverage of ERB record

NOAA Earth Radiation Budget Initiative

Summary

- The BABAR-ERI instrument is the first step towards a low-cost strategy for remote sensing observations and long-term continuation of Earth radiation budget measurements with enhanced spatial and temporal resolution and stability monitoring.
 - Will observe broadband radiation at the spatial scales typical of spectral imagers
 - Designed from the outset as a small volume, weight, and power instrument to facilitate more implementation strategies.
 - Payload Estimates
 - © Size: 12 U © Power: 30 Watts © Mass: 25 kg
- Key Technologies at TRL 5 in Aug. 2023

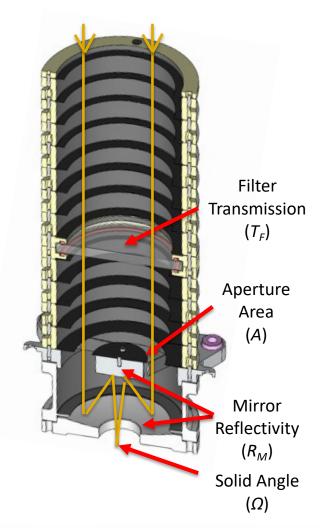
Backups

Calibration Plan

Measurement equation relating measured Power (P) to Radiance (L).

$$L = \frac{1}{R_M^2(\lambda)T_F(\lambda)\alpha(\lambda)} \frac{P - P_D}{A\Omega}$$

Component Level **Calibrations**


- Optical witness sample characterization
 - Telescope area-solid angle product
 - Detector Characterization

End-to-End Calibration

- Absolute Spectral Response Calibration
- Absolute Reference Detector: 0.3-15 µm
- Absolute Blackbody Sources (x2): 15-100 µm

Absolute Reference Detector

- Planar Bolometric Radiometer for Radiance (PBR-R)
- Ambient Temperature VACNT ESR detector (i.e., CTIM)
- SI-traceable to NIST POWR via calibrated trap detector
- Also used in tracking/correcting on-orbit degradation

