National Aeronautics and Space Administration

DEMETER

NASA Langley Research Center

DEMETER: DEMonstrating the Emerging Technology for Measuring the Earth's Radiation

ESTF 2023

June 20, 2023

Kory Priestley, Anum Ashraf NASA Langley Research Center

Executive Summary

DEMonstrating the Emerging Technology for measuring the Earth's Radiation

DEMETER moves the Earth Radiation Budget observational constellation and processing streams into the future, capitalizing on innovative new technology to increase robustness, flexibility and scientific return while significantly reducing lifecycle costs.

- Taken a systematic approach, including a fully integrated Science Advisory Group, that extends beyond simply replacing the 'CERES' instrument. <u>What observations are needed and how are they used.</u>
- Defined an innovative and dedicated ERB observing system to optimize the spatial/spectral/temporal sampling and minimize reliance on external assets that weren't designed for ERB.
- Yields a simplification of the processing system while ensuring both <u>continuity</u> and <u>greater capability</u> b support the next generation of weather and climate models.
- First technology demonstration flight of conformable and reconfigurable platform (with committed funding) scheduled for 2024
- > Gov't, Industry and Academic partners (competitively selected) compose the comprehensive team

ERB Science Overview

- ERB represents a balance between incoming solar radiation reaching the TOA withoutgoing reflected solar and thermal radiant energy emitted by the Earth- atmosphere system
- Long-term, sustained, and accurate climate observations are essential as acknowledged in multiple national and international community reports and publications.
- Since 2000 CERES project has provided the continuous climate data record aboard flagship missions (Terra, Aqua, S-NPP andNOAA-20).
- Overlap in observations between ERB sensors is required to tie the measurements to a common radiometric scale and for data continuity.
- The <u>current</u> approach relies on flying ERB instruments as <u>hosted payloads</u> on <u>large</u> and <u>expensive</u> flagship missions.

Next Generation Solution

<u>DEM</u>onstrating the <u>Emerging</u> <u>Technology</u> for measuring the <u>Earth's</u> <u>Radiation</u>

- Proposed approach is a <u>"right size", free-flying</u> <u>sensorcraft solution</u> and a revolutionary approach for making an enhanced Fundamental Climate Data Record (ERB-FCDR) from LEO as its predecessor CERES
- Next-generation ERB sensor hosted on a cellular, configurable, conformable architecture (SLEGOs).
- Reduces mass, power, and cost, by an order of magnitude over current state-of-the-art techniques.
- Eliminates the classic boundaries of a payload and spacecraft, replacing it with an integrated system that shares resources, eliminating duplicity while increasing redundancy in a small package.

DEMETER moves ERB observations forward with an innovative, low cost/risk, strategic approach

ERB Science Traceability Matrix

	Science Questions	Science Product Characteristics Strategy Physical Parameters Resolution (As applica		duct Characteristics Resolution (As applicable)	Science Measurement Characteristics Observables Instrument Requirements		Minimum Mission Requirements		
Sample every 1° x 1° grid box on the earth every hour.	Q. 1 What is the magnitude of cloud feedback in response to climate forcing?	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OLR and RSR radiative flux for all-sky and clear-sky conditions ¹ .	Vertical: TOA only <u>Spatial</u> : @ 25km, 1*x1*, regional, zonal, global. <u>Temporal</u> : Instantaneous, hourly, 3-hourly, daily, monthly.	Geolocated and calibrated OLR and RSR radiances	OLR and RSR TOA Radiance Observations <u>See Table 1</u>	Sunsynchronous 1:30 pm ascending orbit. Global coverage daily. Overlap with CERES record (1 yr min)]	Broadband Radiance <u>6 – CERES</u> Sensor
	Q, 2 What cloud types/properties are changing in response to climate warming in different regions? How do the changes impact TOA and SFC ERB?		Cloud properties (f, r, r, phase, T) of imager pixels within larger OLR and RSR footprint measurement ² .	<u>Spatial</u> : @ 25km, 1*x1*, regional, zonal, global. <u>Temporal</u> : Instantaneous, daily, monthly.	Geolocated and calibrated spectral radiances	LEO Imager Radiances <u>See Table 2</u>	Within 3 min of and in the same viewing geometry as the OLR and RSR obs. Global coverage daily.	}	Spectral Radiance 4 – ModIS/VIIRS Sensor
	Q. 3 How will changes in the ERB at the TOA and SFC impact atmosphere and ocean circulations, surface temperature, precipitation and sea-level?		Hourly cloud properties and narrow-to- broadband OLR and RSR fluxes.	<u>Spatial</u> : 1*x1*, regional, zonal, global. <u>Temporal</u> : hourly, 3-hourly, daily, monthly.	Geostationary imager and spectral radiances	Geostationary Imagers Consistent with available weather observing system obs.	Coverage over 60°S-60°N, All longitudes	}	Diurnal Coverage 5 – Geo-Imagers
			Solar Irradiance	Spatial: @25km, 1*x1*, regional, zonal, global. <u>Temporal</u> : Instantaneous, hourly, 3-hourly, daily, monthly.	Total solar irradiance measurements	Solar Irradiance Consistent with the SORCE, TSIS solar irradiance CDRs	Daily Coverage		
	Q. 4 How will the total direct radiative effect of aerosols change in the future?		Computed upward and downward all-sky and clear-sky SW and LW surface radiative fluxes	Vertical: TOA, surface, wi/in atmosphere <u>Spatial</u> : @ 25km, 1*x1*, regional, zonal, global. <u>Temporal</u> : instantaneous, hourly, 3-hourly, daily, monthly.	All of the above + Other ancillary data: aerosol retrievals; snow/ice maps; meteorology, ozone & aerosol assimilation.		Meteo. Assimilation – hourly. Others: Daily		Ancillary Dataset Assets

DEMETER Science Traceability Matrix

Sensorcraft Provide Observational Robustness

DEMETER Continues the Evolution

Strategic Development Path forFuture ERB Missions

Sensorcraft Concept of Operations

- Non-scanning, Pushbroom, wide field of view radiometer to measure limb-to-limb TOA radiances, while integrated with a NovaWurks Hyper Integrated Satlet (HISat) sensorcraft.
- Detector array oriented perpendicular to the satellite ground track to simultaneously collect a single limb-to-limb swath.
- Successive readouts of the array represent consecutive swaths providing the necessary spatial coverage of the TOA radiation fields for nominal observations.

Spectral coverage includes <u>broadband</u> (CERES-like) plus <u>spectrally resolved</u> (VIIRS-like)

DEMETER Flight Configuration

+X Velocity RollAxis +Y Sunside Pitch Axis +Z Subsatellite YawAxis **Broadband sensor** 4-tiled telescopes

Nominal EarthViewing

Encapsulated within a standard ESPA SWAP volume 24 x 28 x 38 inches

DEMETER Major Elements

DEMETER is configurable

Swath width can be tailored to meet different science instantiations to achieve global coverage

FOR_{system} = N_{telescope} * FOV_{telescope}

For global coverage in <u>24 hours</u>

from ~600 KmAltitude Constellation

- 1 orbital plane
- 1 sensorcraft per orbit

DEMETER-IIP Execution Team

Instrument Incubator Program Advancing the Broadband Sensor

IIP addresses the technology gap of the broadband sensor

• Awarded by ESTO; Kick-off Jan 2020

Advances the Technology Readiness Level of the sensor assembly (optical module + focal plane module) from TRL 2 to TRL 6

- Develop a prototype unit enabling a follow-on transition to a low-risk flight mission
 - Sensor assembly and on-board calibration system
- Focused studies of modular architecture to host broadband + spectral sensor and calibration module on a single sensorcraft

≻ Team

- Co-Investigators from Langley's ERB science group
- Internal and External partnerships (NASA, industry, academia)

DEMETER

<u>DEM</u>onstrating the <u>Emerging Technology</u> for measuring the <u>Earth's Radiation</u> PI: Dr. Anum Ashraf, LaRC

Objective

- Develop a sensorcraft that demonstrates a **gamechanging** approach for measuring the Earth Radiation Budget Fundamental Climate Data Record.
- Exploit the science capability and greatly exceed data quality of current measurement by:
 - Increasing spatial resolution by factor of 10
 - Incorporating intelligent on-board data processing
- **Innovative** and **integrated** solution that reduces mass, power, risk, and cost, by an order of magnitude over current state-of-the-art techniques.
- Drastically reduced form-factor enables low cost flight opportunities providing more complete global diurnal sampling of radiation fields and significant risk reduction of a gap in the multi-decadal climate data record.

Approach

- Leverage 100+ years of direct experience to pro-actively influence the design and address trades involved in an integrated and intelligent manner
- Design and build a non-scanning wide-angle telescope that reduces IFOV and increases spatial resolution
- Build and test a technology demonstration unit consisting of the wide-angle telescope integrated with sensorcraft elements

Co-I's: Kory Priestley, Wenying Su, Seiji Kato, Dave Doelling, Paul Stackhouse, Mohan Shankar, J. Robert Mahan, Alexander Halterman **Collaborator:** Norman Loeb **Partners:** Science Systems and Applications Inc., Quartus Engineering Incorporated, NovaWurks Inc., Virginia Tech.

Key Milestones

55: 47 kg

Visdom and strategy enabling intelligent evolution.

 Project Kick-off Requirements Definitions Complete Downselection of optical architecture Calibration Analysis Complete Optics Correlation Test Complete Flight Optical Prescription Finalized Stray Light PST Analysis Prototype Detector Delivery 	01/20 03/20 05/20 02/21 09/21 02/22 06/22 04/23
 Sensor Assembly (SA) Integration Complete Form Fit Function and Performance Test of SA On-board Calibration System Design Complete Full System-level RTM test Project Close Out Review 	07/23 08/23 09/23 01/24 05/24

/C mass: 2294 kg

jected Lifespan: 3 yrs

TRL_{in} = 2 TRL_{current} = 4

TRL_{out} = 6

Goddesses of Harvest and Agriculture

Ceres (Roman)

Demeter (Greek)

NovaWurks Hyper Integrated Satlet Building Blocks

Individual HISats are connected to aggregate performance as a PAC (Package of Aggregated Cells)

SmallSat Bus Advantages and Characteristics

- High Performance Bus can be <u>built in months, not years</u>
- Satellite bus is a <u>configuration</u>, low NRE, not a design
- Supports all orbits (LEO-GEO) with scalable life (2, 5, 8+ Year life)
- Payload Centric : <u>Configured to adapt to payload and Launch Vehicle</u>
- Integrated processor, memory, carousel, thrusters, cameras in each HISat
- HISat's share resources power, fuel, data, and thermal
- Fast on-board processing capability
- Allows for technology infusion
- Open source Simplified Interface Plug-n-Play by design
- Mass produced, driving quality and cost efficiencies
- Design provides Significant radiation shielding

DEMETER Science Traceability Matrix

Science Questions	Strategy	Science Proc	luct Characteristics	Science Measurement Characteristics		Minimum Mission Regulaments		
science questions	Strategy	Physical Parameters	Resolution (As applicable)	Observables	Instrument Requirements	Minimum Mission Requirements		
Q. 1 What is the magnitude of cloud feedback in response to climate forcing?		OLR and RSR radiative flux for all-sky and clear-sky conditions ¹ .	Vertical: TOA only Spatial: 1* x 1°, regional, zonal, global. <u>Temporal</u> : Instantaneous, hourly, 3-hourly, daily, monthly.	Geolocated and calibrated broadband OLR and RSR radiances	OLR and RSR TOA Radiance Observations <u>See Table 1</u>	Sunsynchronous 1030 and 1330 ascending orbit. Global coverage daily. Overlap with CERES record (1 yr min)	Broadband Radiance Sensor	Single ERB
Q. 2 What cloud types/properties are changing in response to climate warming in different regions? How do the changes impact TOA and SFC ERB?		Cloud properties (f, r, r, r, phose, T) of imager pixels within larger OLR and RSR footprint measurement ² .	<u>Spatial</u> : 6 1*x1*, regional, zonal, global. <u>Temporal</u> : Instantaneous, daily, monthly.	Geolocated and calibrated spectral radiances	Spectral Radiance Observations <u>See Table 2</u>	Sunsynchronous 1030 and 1330 ascending orbit. Global coverage daily. Overlap with CERES record (1 yr min)] Spectral Radiance Sensor	that carries both sensors
Q. 3 How will changes in the ERB at the TOA and SFC impact atmosphere and ocean circulations, surface temperature, precipitation and sea-level?	Hourly cloud properties and OLR and RSR fluxes.	<u>Spatial</u> regional, zonal, global. <u>Temporal</u> : hourly, 3-hourly, daily, monthly.	Geolocated and calibrated broadband and spectral radiances	OLR, RSR, and Spectral Radiance Observations <u>See Tables 1 & 2</u>	Sunsynchronous 1030 and 1330 ascending, and 1-precessing (50-60 deg, 30.5 day repeat) orbits.] Diurnal Coverage		
		Solar Irradiance	Spatial: 1*x1*, regional, zonal, global. Temporal: Instantaneous, hourly, 3-hourly, daily, monthly.	Total solar irradiance measurements	Solar Irradiance Consistent with the SORCE, TSIS solar irradiance CDRs	Daily Coverage	Constellat samples di	tion of 3 orbits urnal cycle and
Q. 4 How will the total direct radiative effect of aerosols change in the future?		Computed upward and downward all-sky and clear sky SW and LW surface radiative fluxes	Vertical: TOA, surface, wi/in atmosphere <u>Spatial</u> : @ 10km, 0.25° x 0.25°, 1°x1°, regional, zonal, global. <u>Temporal</u> : Instantaneous, hourly, 3-hourly, daily, monthly.	All of the above + Other ancillary data: aerosol retrievals; snow/ice maps; meteorology, ozone & aerosol assimilation.		Meteo. Assimilation – hourly. Others: Daily	eliminates Geostationa	dependence on ary observations

DEMETER Science Traceability Matrix

Science Questions	Strategy	Science Product Characteristics Science Measurement Characteristics		ent Characteristics	Minimum Mission Requirements				
Q. 1 What is the magnitude of cloud feedback in response to climate forcing?		Physical Parameters OLR and RSR radiative flux for all-sky and clear-sky conditions ¹ .	Resolution (As applicable) <u>Vertical</u> : TOA only <u>Spatial</u> : 1* x 1*, regional, zonal, global. <u>Temporal</u> : Instantaneous, hourly, 3-hourly, daily, monthly.	Observables Geolocated and calibrated broadband OLR and RSR radiances	OLR and RSR TOA Radiance Observations <u>See Table 1</u>	Sunsynchronous 1030 and 1330 ascending orbit. Global coverage daily. Overlap with CERES record (1 yr min)]	Broadband Radiance Sensor	
Q. 2 What cloud types/properties are changing in response to climate warming in different regions? How do the changes impact TOA and SFC ERB?		Cloud properties (f, r, r, r, phose, T) of imager pixels within larger OLR and RSR footprint measurement ² .	<u>Spatial:</u> 1*x1*, regional, zonal, global. <u>Temporal</u> : Instantaneous, daily, monthly.	Geolocated and calibrated spectral radiances	Spectral Radiance Observations <u>See Table 2</u>	Sunsynchronous 1030 and 1330 ascending orbit. Global coverage daily. Overlap with CERES record (1 yr min)]	Spectral Radiance Sensor	tner
Q. 3 How will changes in the ERB at the TOA and SPC impact atmosphere and ocean circulations, surface		Hourly cloud properties and OLR and RSR fluxes.	<u>Spatial</u> regional, zonal, global. <u>Temporal</u> : hourly, 3-hourly, daily, monthly.	Geolocated and calibrated broadband and spectral radiances	OLR, RSR, and Spectral Radiance Observations <u>See Tables 1 & 2</u>	Sunsynchronous 1030 and 1330 ascending, and 1-precessing (50-60 deg, 30.5 day repeat) orbits.]	Diurnal Coverage	
temperature, precipitation and sea-level?									
Q. 4 How will the total direct radiative effect of aerosols change in the future?			Vertical: TOA, surface, wi/in atmosphere Spatial: @ 10km, 0.25" x 0.25", 1"x1", regional, zonal, global. <u>Temporal:</u> Instantaneous, hourly, 3-hourly, daily, monthly.						