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• Earth Systems Modeling 
Framework (GEOS)

• MAPL (GEOS)
• NASA’s Land 

Information Systems  
(operational driver for 
land surface models)



AI-models use 
differently 

structured data 
(sequence-to-one 

sequence-to-
sequence, image 

stacks/series)

Existing 
frameworks do 

not provide 
gradients to 

train fully 
integrated AI 
technologies.

Adoption of AI-based Technology

This is relevant today. AI 
technologies already exist that 
offer improved capabilities. 

The AI community 
leverages powerful 

(Python) tensor-
based software which 

is not easily 
integrated within 
existing Fortran 

frameworks.

Assimilation 
techniques in 

AI can use 
tensor 

gradients 
techniques.



A oupled eusable arth ystem ensor (CREST) Framework 
An AI-First Python framework for building coupled open-science Earth Systems Models

CREST Hierarchal Tensor Graph/Model

Tensor Network 
Backend

Earth Systems Model 
Hierarchal Graph

Provides a specification/map between 
a Tensor Network graph and ESM graph.

Standardizes how data is 
passed between sub-

systems.

CREST Operational Infrastructure

Creates a layer between the tensor 
backend to enable flexible, extensible, 

agnostic infrastructure to be built.

Internally handles different types of 
AI-models: Keras, Pytorch, Jax, 

Black-box models.

Data Management for 
loading large geo-spatial-

temporal data.

Data Asssimilation for ingestion 
of near real-time data and 

adaptability.

Easy-to-use GUI-based 
driver for operation and 

analysis.

Training, inference, and scenario 
analysis workflows to perform 

operational simulations.

Combines the idea 
of ESM hierarchal 
graphs with Tensor 
Network graphs.

Infrastructure to 
build, maintain, 
and operate 
ESMs.



Traditional Modeling In CREST

NEED
GRADIENTS

Rewrite (Fortran) 
models in a tensor 

language.
Leverage black-box 
gradient estimates.

Development of a 
reliable auto-

differentiator for 
Fortran.

Apply physical 
constraints on AI 

models.

Integrating traditional models in 
CREST is targeted for future 
development.

Emerging  packages like JAX offer 
the use of numpy-like numerical 
packages that make this easier. 



TERRAHydro

Backend

Coupled Land 
Surface Model

Soil 
Moisture
[e.g., 1,2,3]

CREST Backend

Streamflow
[e.g., 4,5,6,7]

Snowpack
[e.g. 15,16,17,18]

Net
Ecosystem
Exchange
[e.g. 11,12,13,14]

Evapotranspiration
[e.g. 8,9,10]

TERRAHydro

Important for 
Digital Twin 
capabilities



CREST Progress

Data Loading Model 
Specification

Training and 
Validation Inference

crest.Dataset
crest.StructuredDataset crest.HierarchalTensorGraph crest.Batcher

crest.Model
TBD

Efficiently loads large 
heterogeneous gridded 

geospatial-temporal 
data

Currently restricted to 
TensorFlow (Keras) AI-

based models. 

Builds Keras models 
and efficiently batches 

data contained in 
Dataset. 

Inference can be 
performed but software 

design still being 
conceptualized



TERRAHydro Progress

Backend

Coupled Land 
Surface Model

Soil 
Moisture
[e.g., 1,2,3]

CREST Backend

Streamflow
[e.g., 4,5,6,7]

Snowpack
[e.g. 15,16,17,18]

Net
Ecosystem
Exchange
[e.g. 11,12,13,14]

Evapotranspiration
[e.g. 8,9,10]

TERRAHydro



Timeline

September, 2022

Project kick-off.

1st  year milestone

End-to-end capabilities in CREST 
and a simplified coupled model 

with SM+ET.

18 month demo

TERRAHydro retrospective 
demonstration of a coupled land 
surface (SM+ET+NEE) model for a 

hydrological event.

2nd year milestone

TERRAHydro coupled land surface 
model and assimilation completed 

along with all relevant CREST 
features for the third-year demo.

3rd year

Full scale retrospective 
demonstration including data 

assimilation and scenario 
analysis on relevant hydrological 

events.
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