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The Structure of

Farth Systems
Models

» Composed of a coupled set of sub-systems or
models of physical processes.

* Organizable into a hierarchal graph with
components developed and maintained by domain
experts across multiple organizations (e.g.,
government, academia, industry).

* Existing frameworks mostly written in/for Fortran
and parallelized with MPI for scalability on large
CPU-based clusters and not designed for
integrating Al technogies.
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Adoption of Al-based Technology
tensor-
« Data-Driven models have emerged hased software
across many Earth Science domains and
have been shown to be a powerful
alternative to traditional modeling.

* Very few operational Al-based Earth
Systems models exists today (one gradients
counter example is Google’s flood

Some Barriers to AN
Adoption

forecasting system).

* Integration into existing modeling
frameworks is a significant challenge to
the adoption Al-based technologies.

tensor
gradients
techniques
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A Coupled 'feusable f“arth “ystem ' ensor Framework
An Al-First Python framework for building coupled open-science Earth Systems Models

Combines the idea
of ESM hierarchal [
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graphs with Tensor
Network graphs.

CREST Hierarchal Tensor Graph/Model

Provides a specification/map hetween Standardizes how data is Internally handies different types of Creates a layer hetween the tensor
a Tensor Network graph and ESM graph. passed hetween sub- Al-models: Keras, Pytorch, Jax, hackend to enable flexihle, extensible,
systems. Black-hox models. agnostic infrastructure to he built.

Infrastructure to

. cATOperatomallimastucwre  © e
and operate

l l l l ESMs.
Data Management for Data Asssimilation for ingestion Easy-to-use GUI-hased Training, inference, and scenario
loading large geo-spatial- of near real-time data and driver for operation and analysis workilows to perform
temporal data. adaptahility. analysis. operational simulations.
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Traditional Modeling In CREST

It is easier to express physical
processes in Tensor Networks than
integrate tensor networks in physical-
based model.

Any physical-based or process-based
parameterized model can be written
using tensor-based software.

Some work on incorporating physical
constraints within Al models.

Some approaches to estimate gradients
of black-box models which would allow
wrapping of Fortran-based models into
python for inclusion in CREST.

Some efforts towards Fortran auto-diff.
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TERRAHydro

» Takes the next step in data-driven hydrology by
coupling together 5 existing Al-based land surface
components to assemble a land surface digital twin.

* Demonstrates an application of the CREST
framework for assembling coupled Al-based Earth
Systems Models --- guides the development.

* Enables new tensor-gradient-based data assimilation
techniques in addition to traditional Bayesian
approaches for near-real time ingestion of data.

« Computational efficiency and use of hardware
accelerators enables rapid adaptability and scenario
analysis beyond current capabilities.

* Potential for improved accuracy. References can be
found on the last slide.

June, 2023

TERRAHydro

TERRAHydro

[e.9.8,9,101

Soil
Ecosystem Moisture
Exchange ley,123]
le.g.111213,14]
Snowpack CREST Backend
[e.g.15,16,17,18]
Streamflow
le.g.456,11



CREST Progress
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TERRAHydro Progress

* Soil Moisture, Evapotranspiration, Net Ecosystem
Exchange (3 of 5) land surface components have been
implemented and moderately validated.

*  ESMWF (ERAD)), Soil Moisture Active Passive (SMAP),
and FluxNet data has been ingested for training.

* Large scale validation to reproduce paper results
underway.

* A coupled Soil Moisture + Evapotranspiration model is
underway with a target demonstration of coupled Soil
Moisture + Evapotranspiration + Net Ecosystem
Exchange model for an |8-month demo.
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TERRAHydro

Coupled Land
Evapotranspiration Surface Model
[e.g.8,9,10]
Net Soil
Exchange [6.g.123]
le.g. 111213141
Snowpack CREST Backend
le.g.19,16,17,18]
Streamflow
le.y.456]1
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Timeline
Full scale retrospective
TERRAHydro retrospective demonstration including data
demonstration of a coupled land assimilation and scenario
surface (SM+ET+NEE) model for a analysis on relevant hydrological
Project kick-off. hydrological event. events.
? o (@)
— 18 month demo 2" year milestone Jrd year
.
End-to-end capabhilities in CREST TERRAHydro coupled land surface
and a simplified coupled model model and assimilation completed
with SM+ET. along with all relevant CREST
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Thank You

Craig Pelissier,
Lead, Advanced Software Technology Group (ASTG)
NASA Goddard/SSAl
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