FACILITATING SCIENCE ANALYSES WITH UNCERTAINTY-
AWARE EMULATION

Jouni Susiluoto’, Amy Braverman', Ziad Haddad', Otto Lamminpaal, Houman Owhadi’, Sai Prasanth’,
and others

et Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
*California Institute of Technology, Pasadena, CA 91125, USA
(©) 2023 California Institute of Technology. Government sponsorship acknowledged.

ESTF, June 22, 2023

Jet Propulsion Laboratory
California Institute of Technology



Here are some examples of the types of problems that we try to help address

Assume you have a model that you use to answer tricky questions, such as:

<« How sensitive is climate to carbon emissions?

<« How much carbon do we have in the atmosphere?
<« Where do we see water stress effects on Earth right now?
<« What data should we collect in order to maximize impact of a remote sensing mission?
» Emulators are fast approximations of computationally more expensive models.
» However, we specifically also consider arbitrary input-output relations in what we do (data-
driven model construction).
» Accurate and fast model emulation can help answer the questions above.

» Emulators are particularly useful in the context of inverse problems (remote sensing re-

trievals, Bayesian analysis, etc.).



Example 1: Climate sensitivity

Emulation of Transient Climate Response to Cumulative Carbon Emissions (TCRE) with data from
the University of Victoria Earth System Climate Model (UVICESCM). Based on work by Antti-Ilari
Partanen / Carla di Natale at Finnish Meteorological Institute.
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How does our emulator look like?

Must-haves:
p It is accurate
» It is able to model complex non-linear phenomena

p It is fast

Nice-to-haves:
» Training is fast, robust, and easy
» The emulators are close to being portable and easy to use
» Training and running the emulator does not require specialized hardware

» The software is open source.



Example 2: Orbiting Carbon Obsevatory

0OCO-2/3 Level 2 retrievals re-
quire running a radiative trans-
fer model. Here we emulate one
of three quantities, the weak
CO2 band. The target is to
be under instrument noise level
(£1 on the y-axis). This is true
also for the two other quantities
(02 and strong CO2 bands). A
two-level emulator was used to
obtain these results.
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Example 3: Imaging specroscopy (1/2)

» Instruments: SBG, EMIT, Imaging spectroscopy example from the AVIRIS-NG website,

AVIRIS-NG, PRISMA, En-
MAP, etc.

» Instruments retrieve spec-

https://aviris-ng.jpl.nasa.gov/aviris-ng.html

tral surface reflectance
» Hundreds of spectral bands

» Technology allows observ-
ing a wider range of phe- ;

nomena ranging from car-
bon emissions to minerol-
ogy, water stress, algae,
snow properties, vegeta-
tion properties / state, etc.


https://aviris-ng.jpl.nasa.gov/aviris-ng.html

Example 3: Imaging specroscopy (2/2)

» Inferring surface reflectance requires simulating radiative transfer quantities multiple times

P Space-based instruments measure tens of thousands of spectra per second
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Examples of other emulator use cases that we have considered:

» On the right: Ice-water Ice-Water path retrieval RMSE
path retrievals and convec-

. . 1000 | =7 Gaussian Weighting
tive storm now-casting. [——1Kernel Flows

» Improvement over opera-
tional GPROF algorithm 750 |

» Data is very noisy

» Low-end improvement is

o m)
physically important E 500 |
« Other applications:
<« Mission design via simula-
. . 250
tion studies
« Other radiative transfer
applications (snow etc.)
0 -

<« Spatio-temporal inference 0-200 200-400  400-600  600-800 800-1200 1200-2000

<« Reliability analysis and [g/m?]
rare events
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What is under the hood?

Construction

p» The underlying technol-
ogy is a non-standard
multivariate  Gaussian

process model

Heavily modified para-
metric Kernel Flows al-
gorithm (Owhadi et al.
2019)

Model training is based

on cross validation

Non-linear transforma-

tions of inputs

Input and output di-
mension reduction

Performance

>

Training takes 1-3 min-
utes on a laptop

» Single-threaded predic-

tion is around 1 ms

Accuracy is 1-2 orders of
magnitude better than
with vanilla off-the-shelf
GP models

» Implementation lan-
guages: Julia  for
training; prediction

straightforward to im-
plement in any languate
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Questions / comments

» No public reference yet; manuscript in prep. Description of the standard Kernel Flows
algorithm is available in the canonical reference:
H. Owhadi and G. R. Yoo. Kernel flows: From learning kernels from data into the abyss.
Journal of Computational Physics, 389:22-47, 2019.

» Open source code will be available later this summer.

» For further info, please just get in touch at jouni.i.susiluoto@jpl.nasa.gov
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