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Here are some examples of the types of problems that we try to help address

Assume you have a model that you use to answer tricky questions, such as:

◀ How sensitive is climate to carbon emissions?

◀ How much carbon do we have in the atmosphere?

◀ Where do we see water stress effects on Earth right now?

◀ What data should we collect in order to maximize impact of a remote sensing mission?

▶ Emulators are fast approximations of computationally more expensive models.

▶ However, we specifically also consider arbitrary input-output relations in what we do (data-

driven model construction).

▶ Accurate and fast model emulation can help answer the questions above.

▶ Emulators are particularly useful in the context of inverse problems (remote sensing re-

trievals, Bayesian analysis, etc.).
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Example 1: Climate sensitivity

Emulation of Transient Climate Response to Cumulative Carbon Emissions (TCRE) with data from

the University of Victoria Earth System Climate Model (UVICESCM). Based on work by Antti-Ilari

Partanen / Carla di Natale at Finnish Meteorological Institute.

▶ Emulating 20 inputs to one output

(R20
→ R)

▶ Training data size: 200 simulations

▶ Testing data size: 77 simulations

▶ Sub-optimal training data design

▶ Data generation took a full month

on Europe’s fastest supercomputer.

▶ Emulation results (including writing

the script) were produced over a cof-

fee break.

3



How should such an emulator look like?

Must-haves:

◀ It must be sufficiently accurate

◀ It must be able to model complex non-linear phenomena

◀ It must be fast

Nice-to-haves:

◀ Training should be fast, robust, and easy

◀ The emulators should be portable and easy to use

◀ Training and running the emulator should not require specialized hardware

◀ The software should be open source.
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How does our emulator look like?

Must-haves:

▶ It is accurate

▶ It is able to model complex non-linear phenomena

▶ It is fast

Nice-to-haves:

▶ Training is fast, robust, and easy

▶ The emulators are close to being portable and easy to use

▶ Training and running the emulator does not require specialized hardware

▶ The software is open source.
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Example 2: Orbiting Carbon Obsevatory

OCO-2/3 Level 2 retrievals re-

quire running a radiative trans-

fer model. Here we emulate one

of three quantities, the weak

CO2 band. The target is to

be under instrument noise level

(±1 on the y -axis). This is true

also for the two other quantities

(O2 and strong CO2 bands). A

two-level emulator was used to

obtain these results.
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Example 3: Imaging specroscopy (1/2)

▶ Instruments: SBG, EMIT,

AVIRIS-NG, PRISMA, En-

MAP, etc.

▶ Instruments retrieve spec-

tral surface reflectance

▶ Hundreds of spectral bands

▶ Technology allows observ-

ing a wider range of phe-

nomena ranging from car-

bon emissions to minerol-

ogy, water stress, algae,

snow properties, vegeta-

tion properties / state, etc.

Imaging spectroscopy example from the AVIRIS-NG website,

https://aviris-ng.jpl.nasa.gov/aviris-ng.html
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Example 3: Imaging specroscopy (2/2)

▶ Inferring surface reflectance requires simulating radiative transfer quantities multiple times

▶ Space-based instruments measure tens of thousands of spectra per second
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Examples of other emulator use cases that we have considered:

▶ On the right: Ice-water

path retrievals and convec-

tive storm now-casting.

▶ Improvement over opera-

tional GPROF algorithm

▶ Data is very noisy

▶ Low-end improvement is

physically important

◀ Other applications:

◀ Mission design via simula-

tion studies

◀ Other radiative transfer

applications (snow etc.)

◀ Spatio-temporal inference

◀ Reliability analysis and

rare events 10



What is under the hood?

Construction

▶ The underlying technol-

ogy is a non-standard

multivariate Gaussian

process model

▶ Heavily modified para-

metric Kernel Flows al-

gorithm (Owhadi et al.

2019)

▶ Model training is based

on cross validation

▶ Non-linear transforma-

tions of inputs

▶ Input and output di-

mension reduction

Performance

▶ Training takes 1–3 min-

utes on a laptop

▶ Single-threaded predic-

tion is around 1 ms

▶ Accuracy is 1-2 orders of

magnitude better than

with vanilla off-the-shelf

GP models

▶ Implementation lan-

guages: Julia for

training; prediction

straightforward to im-

plement in any languate
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Questions / comments

▶ No public reference yet; manuscript in prep. Description of the standard Kernel Flows

algorithm is available in the canonical reference:

H. Owhadi and G. R. Yoo. Kernel flows: From learning kernels from data into the abyss.

Journal of Computational Physics, 389:22-47, 2019.

▶ Open source code will be available later this summer.

▶ For further info, please just get in touch at jouni.i.susiluoto@jpl.nasa.gov
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