

SMart Ice Cloud Sensing (SMICES) with a SmallSat Active/Passive Terahertz Instrument

Akim Babenko¹, Pekka Kangaslahti¹, William Deal², Caitlyn Cooke², Gerry Mei², Mehmet Ogut¹, Omkar Pradhan¹, William Chun¹, Joelle Cooperrider¹, Ken Kreischer²

Jet Propulsion Laboratory California Institute of Technology

SMICES is an Instrument Incubator Program (IIP-19) project funded by

Session 12: Aerosols, Clouds, Convection, and Precipitation © 2023. California Institute of Technology. Government sponsorship acknowledged.

SMICES Instrument Overview

Radiometer Beam

45°

The instrument will be demonstrated airborne, paving the way to future SmallSat missions <u>SMICES comprises:</u>

- 239 GHz radar
- 250 GHz, 310 GHz and 670 GHz radiometers
- 380 GHz sounder

SMICES features:

- Novel terahertz receiver architecture [1]
- 1/f noise mitigation technique [2]
- On-board artificial intelligence (AI) controller detects radiometric features to intelligently control the radar [3-4]

Ground Track

•

Jet Propulsion Laboratory California Institute of Technology

- Active/passive instrument with a 239 GHz radar for active cloud ice mapping
 - Observations of a cloud system with broadband radiometer channels
- On-board smart operation for more power-efficient and enhanced science return

© 2023. California Institute of Technology. Government sponsorship acknowledged.

NORTHROP

GRUMMAN

Earth Science Benefits

- High-resolution vertical structures of ice cloud microphysics enabled by powerefficient active-passive measurements
- Maximized science return on deep convective cloud processes with "Smart" targeting.
- "Stare at deep convective cell" unique overflight measurements of rapid temporal evolution of storms: 1 second resolution for several minutes

Al enables collection of convective storm data at 20% duty cycle / reduced swath by "smart" targeting

Mission Benefits

- Major power savings on SmallSat resources
- *Significant* reduction in average power consumption of the 50 W radar at 239 GHz
- Thus, significant average total power reduction (see table below)

Preliminary power budget

DC Power (W)	Radiometer	Radar	Al Controller	Total
Peak	16	361	0	377
25% Radar Duty Cycle	16	186	0	202
SMICES (AI Control)	16	37	7	60

NORTHROP GRUMMAI

Orbital Simulation

Jet Propulsion Laboratory

California Institute of Technology

- Radiometer Swath: 60°, 716 km length
- Radar: 15°, 195 km Swath diameter
- Radar Footprint: 4 km
- Orbital Altitude: 400 km
- Feature Altitude: 10 km

Airborne Simulation

- Radiometer Swath: 60°, 10 km length
- Radar Swath: 40°
- Radar Footprint: 100 m
- Airborne Altitude: 15 km
- Feature Altitude: 10 km

nadir coordinate: 28.184, -85.833

Black circle represents radar boundary Black point represents nadir

Dark blue pixels signify locations analyzed by the autonomous radar [3]

SMICES SWaP Summary

SMICES 239 GHz Radar SWaP

NORTHROP'

GRUMMAN

SMICES 239 GHz Radar Assembly

Radar front-end assembled on the bench

Jet Propulsion Laboratory

California Institute of Technology

• Set up for front-end TX and RX testing through optics

NORTHROP

GRUMMAN

SMICES Radiometer SWaP

SMICES Radiometer Assembly

© 2023. California Institute of Technology. Government sponsorship acknowledged.

- The Smart Ice Cloud Sensing (SMICES) instrument will provide high-resolution, accurate measurements of upper-tropospheric/lower stratospheric cloud ice particle size and water vapor profiles
- SMICES will use autonomous operational capabilities enabled by an on-board Al controller
- Al processor will use 250/310/670 GHz radiometer and 380 GHz sounder measurements to control the 239 GHz radar measurements
- Integration and testing of the instrument are to be completed by the end of 2023
- An airborne demonstration is planned for early 2024 on a Northrop G-II aircraft

- X. Bosch-Lluis et al., "Smart Ice Cloud Sensing (SMICES): An Overview of its Submillimeter Wave Radiometer," IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 4296-4299, doi: 10.1109/IGARSS46834.2022.9883671.
- C. M. Cooke et al., "A 670 GHz Integrated InP HEMT Direct-Detection Receiver for the Tropospheric Water and Cloud Ice Instrument," in IEEE Transactions on Terahertz Science and Technology, vol. 11, no. 5, pp. 566-576, Sept. 2021, doi: 10.1109/TTHZ.2021.3083939. 2023 IEEE Best paper award
- 3. Swope, J et al. Using Intelligent Targeting to increase the science return of a Smart Ice Storm Hunting Radar. In *International Workshop on Planning & Scheduling for Space (IWPSS)*, July 2021. <u>CL21_3037.pdf - JPL Open Repository (nasa.gov)</u>
- M. Ogut et al., "Autonomous Capabilities and Command and Data Handling Design for the Smart Remote Sensing of Cloud Ice," IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 7119-7122, doi: 10.1109/IGARSS46834.2022.9883491.

Thank you!

https://en.wikipedia.org/wiki/Grumman_Gulfstream_II#/media/File:Ng-GII-bams-N82CR-070709-01-16.jpg

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Most of the content is funded under NASA-ESTO IIP19 NRA NNH19ZDA001N-IIP.