

3D-CHESS: Decentralized, Distributed, Dynamic, and Context-aware Heterogeneous Sensor Systems – Preliminary Results

ESTF 2023 July 12, 2023

PI: Daniel Selva (Texas A&M University)

Co-Is: George Allen (Virginia Tech), Huilin Gao (Texas A&M University), Ankur Mehta (UCLA), Yizhou Sun (UCLA), *Vinay Ravindra* (ARC/BAERI), Cedric David (JPL)

Students: Alan Aguilar, *Ben Gorr*, Chrissi Erwin, Molly Stroud, Vivian Cheng, Zida Wu, Wooyeong Cho

Overarching Goal: To provide **proof of concept** (TRL 3) for a **context-aware** network of **heterogeneous** sensors, in the context of an **inland water ecosystem monitoring** mission

- Inland water bodies can dramatically change states within minutes to hours.
 - These changes are increasingly extreme and difficult to predict due to climate change.
- Need for high spatial, temporal, and/or spectral resolutions, from heterogeneous sensors.
- To monitor and respond to a dynamic environment, significantly more **autonomy** is needed in the Earth observing systems.
- Autonomy requires **context awareness** and **decentralized** coordination.

	State of practice	State of research	3D-CHESS
Context information used for planning	Own state	Own state Earth system state (from own measurements)	Own state and capabilities Earth system state (from own and others' measurements) Others' states and capabilities
Sensors and platforms	Homogeneous	Homogeneous or Heterogeneous	Heterogeneous
Mission	Single Static Objective	Single Dynamic Objective	Multiple Dynamic Objectives
Planning strategy	Centralized	Centralized or Decentralized with predefined functions	Decentralized

Example Mission: River Flooding

- River level can change dramatically in a matter of minutes after heavy rainfall poses a significant challenge in **temporal resolution**
- The majority of Earth's rivers especially those sensitive to flash floods – are not visible at coarser spatial resolution
- Many types of instruments can observe river extent (visible and infrared) and river height (altimeters) – making this perfect for a heterogeneous sensor web
- Most of the world's rivers, especially in less developed nations, are ungauged and unmonitored
- Total suspended sediment (TSS) changes with river level how do floods affect **water quality**?
- **Question:** With a decentralized, distributed, dynamic and context-aware heterogeneous sensor system, how many more floods can we observe than the current remote sensing status quo?

• Pedernales State Park, TX

Scenario Details

- Taking 16 days of river discharge data from the USGS gauge network, and comparing to historical levels
- Classifying "floods" as 1 year floods, and "high flow events" as >75th percentile discharge
- Sensor Web:
 - Imagers: Landsat, Sentinel-2A/B
 - Altimeters: Sentinel-6A/B, SWOT, Jason-3, CryoSat-2
 - Ground nodes acting as the measurement request generator
- **Metric:** How many co-observations (i.e. imagery+altimetry) can we make?
- Variable: Nadir pointing (status quo) vs. 3D-CHESS (dynamic, decentralized, distributed, context-aware)

3D-CHESS Architecture Overview

- · 3D-CHESS Nodes modeled as Agents
- Environment modeled as a server to be accessed by nodes
 - Simulates Earth system AND agent state (e.g., position, velocity, comms accesses, coverage metrics)
 - Nodes "sense" the environment by requesting data from the environment server
- Message-driven architecture. Agents exchange messages via TCP
 - Point-to-point (REQ/REP ports) for agent comms and agent-to-server sensing
 - Publish-subscribe (PUB/SUB ports) for note-to-node broadcasts and manager-to-nodes/environment simulation control messages
 - Push-pull (PUSH/PULL ports) for nodes and environment results logging
 - Time management can be Real-time, Accelerated real-time, or Event-driven.

Agent Node Architecture

- Message-Driven Internal Modules
 - Intra-agent modules modeled as concurrent asynchronous processes
 - Communicate by sending messages into asynchronous message queues

Planning Module – Knowledge Graph

- KG types of entities and relations loosely based on **Semantic Sensor Network** ontology
 - BUILT, BUILT_BY, HOSTS, INCLUDES, INSTANCE_OF, IS_HOSTED_BY, OBSERVES, TYPE_OF
- Data mined from **CEOS database**
- Implemented in Neo4j
 - 3,162 nodes; 15,591 relations
 - Example triplets:
 - Observes(POSEIDON-3B Altimeter, Sea level)
 - Instance_of(POSEIDON-3B Altimeter, Ku-band radar altimeter)

Metric	3D-CHESS	Status quo
Unique floods imaged (total)	6 (12)	16 (32)
Unique floods altimetered (total)	3 (3)	3 (3)
Unique high flows imaged (total)	375 (750)	224 (448)
Unique high flows altimetered (total)	164 (164)	77 (77)
Unique floods co-observed	1	1
Unique high flows co-observed	139	72
Unique floods (total)	162 (2291)	
Unique high flows (total)	355 (7900)	

Results cont.

- Incorporate decentralized planning using the Modified Asynchronous Coupled-Constraint Consensus-Based Bundle Algorithm (MACCBBA) algorithm
- Coordinate observations based on decentralized Kalman filter of events
- Incorporate probabilistic knowledge and knowledge graph reasoning rather than rule-based system
- Expand scenario definition to include SARs, UAVs, in-situ gauges

Asynchronous MCCBBA

