Miniaturized Microwave Absolute Calibration (MiniMAC) for Atmospheric Remote Sensing from Small Satellites

Steven C. Reising¹, Omar Khatib², Dazhen Gu³, Jonah A. Smith¹, William R. Deal⁴, Katalin Balogh⁴, Natalie Rozman², and Willie J. Padilla²

¹Colorado State University, Fort Collins, CO ²Duke University, Durham, NC ³National Institute of Standards and Technology, Boulder, CO ⁴Northrop Grumman Corporation, Redondo Beach and Azusa, CA

2023 NASA Earth Science Technology Forum, Planetary Boundary Layer Session Pasadena, California June 22, 2023

Motivation for MiniMAC

- CubeSat missions such as TEMPEST-D, RainCube and the TROPICS Pathfinder / Constellation have clearly demonstrated well-calibrated and validated passive and active microwave observations of atmospheric processes on a global basis.
- Capabilities of these CubeSat sensors have been demonstrated to be equivalent to those of operational sensors (*Berg et al., IEEE TGRS, 2021*).

TEMPEST-D and GMI Observations of Hurricane Sally on Sept. 19, 2020

- "NewSpace" developments of CubeSats and SmallSats provide a rapidly increasing myriad of opportunities for deployment of on-orbit microwave sensors and satellite constellations.
- An improved method is needed to determine the calibration accuracy and precision of new sensors to further improve the fidelity of future global weather and climate observations.

Geometry 7/12/2021 2:01 PM

ANSYS

NIST Blackbody Calibration Target

Key Benefits

Thermal Model of NIST Blackbody Target

- <u>SI traceability</u> of pre-launch instrument calibration
- Improves accuracy of microwave sensors during on-ground validation
- Reduces time and effort needed for on-orbit calibration and validation
- Improved characterization of heterogeneous passive microwave sensors

Miniaturized Calibration Targets

Develop, Produce and Validate Innovative Metamaterial Calibration Targets

State of the Art

Game-Changing Technology

(inside)

ATMS Blackbody Calibration Target

Key Benefits:

Planar Metamaterial Target for On-orbit Calibration on Small Satellites

- PCB Calibration Target << mm thickness, weighing only ounces
- Improved thermal homogeneity for calibration
- Tailored frequency response defined by photolithographic features
- Simplified integration into planar/conformal structures

Design of Metamaterial Calibration Target

 H_2O

mm-wave

 O_2

(W-band) (D-band) (G-band) Window

 O_2

(V-band)

1.00

90 GHz

Metamaterials (MM) for calibration of millimeter-wave temperature and water vapor sounders and imagers

• *Electrodynamic similitude* – scaling operating frequency by scaling geometry

Metamaterial Design Improvements

Broadened bandwidth and multi-frequency emission

S. C. Reising et al.

Machine Learning for Metamaterial Design

Deep neural networks (DNN) for metamaterial supercell emitter design**

 $g = \{a, L_1, L_2, w_1, w_2, t_1, t_2, \dots\}$

Data-driven approach (~10⁴ simulations for DNN training)

**C.C. Nadell et al. Optics Express 27, 27523 (2019); S. Ren et al., NeurIPS-2020; Y. Deng et al., Optics Express 29, 7526 (2021); O. Khatib et al., Adv. Funct. Mater. 2021, 2101748

S. C. Reising et al.

Metamaterial Target Fabrication

National Institute of Standards and Technology U.S. Department of Commerce

- Initially used commercial PCB manufacturing technology → easy and cost-effective to fabricate
- 10 PCB boards < \$1500
- Initial design frequency: 54 GHz (31 x 31 unit cells)
- 8 cm x 8 cm board with extensible dimensions

Validation using Free-Space mm-Wave Reflectivity Measurements

National Institute of Standards and Technology U.S. Department of Commerce

S. C. Reising et al.

Anechoic Chamber Measurements at NIST Boulder

- NIST anechoic chamber 2.3 m x 2.4 m x 3 m, ~150 dB isolation.
- Vector network analyzer (VNA) with frequency extenders up to 220 GHz.
- Linear translation stage: 30 cm travel range and 2 μm repeatability.

Comparison of Simulated and Measured Metamaterial Targets

- Metamaterial sample dimensional metrology
- Characterized FR4 substrate mm-wave properties
- Re-simulated metamaterial response based on ⁸⁸⁶ µm
 experimental data and metrology

 $\tan \delta = 0.027$

2023 NASA Earth Science Technology Forum

0.2

1.0

0.8

12

0.6

Freq. (THz)

0.4

Metamaterial Supercell Targets

National Institute of Standards and Technology U.S. Department of Commerce

S. C. Reising et al.

• Machine Learning \rightarrow optimize multilayer supercell design, for high emissivity near 230 GHz (MM_E) as well

Max

IE|

0

Duke Waveguide Measurements of Complex Permittivity of FR4 Substrate

National Institute of Standards and Technology U.S. Department of Commerce

S. C. Reising et al.

Metamaterial PCB Target (MM_{CD})

National Institute of Standards and Technology U.S. Department of Commerce

Design for calibration of mm-wave sounders of atmospheric temperature and water vapor near 118 and 183 GHz

Microscopic image for detailed metrology:

MM_{CD} metamaterial calibration target

Simulation comparison based on updated metrology of fabricated MM_{CD} and THz-TDS experimental data

S. C. Reising et al.

Metamaterial Target Nanofabrication Steps

Benefits of Nanofabrication:

- Pattern reproducibility
- Reliable material constants
- Smaller feature size (>2 µm)
- Smaller dimension tolerance

Contact photolithography (Karl Suss: MA6/BA6)

E-beam evaporation (CHA Industries: Solutions)

SEM of a metamaterial array with a critical dimension of 10 µm

Duke nanofabrication facilities

S. C. Reising et al.

MM_{CD} Target Nanofabrication Steps

National Institute of Standards and Technology U.S. Department of Commerce

Example layout of a 10-cm circular exposure area, with 18 each of 1.5×1.5 cm metamaterial designs.

Fabrication steps for the MM_{CD} metamaterial using contact photolithography, metal deposition, and lift-off.

Thanks to the NASA Earth Science Technology Office for their support!

S. C. Reising et al.

2023 NASA Earth Science Technology Forum

June 22, 2023

Backup Slides

- Time-domain method (THz-TDS)
 - Broader bandwidth, more versatile (angular variation)
 - Less accurate, i.e. not as effective below 100 GHz
- Frequency-domain method (mm-Wave VNA measurements)
 - More accurate, reliable instrumentation
 - Segmented waveguide frequency bands, i.e. more time intensive

Increasing Metamaterial Bandwidth

National Institute of Standards and Technology U.S. Department of Commerce

w,

Add random geometric variations to increase bandwidth of high emissivity

- Deliberately broaden peak emission frequency range
- Add "Gaussian noise" to unit cell geometrical parameters

S. C. Reising et al.

NIST National Institute of Standards and Technology U.S. Department of Commerce Arize surface

Equipment and Chemical List:

- Karl Suss MA6/BA6 Frontside/Backside Contact Aligner
- 5" Cr on quartz photomask
- CHA Industries Solution E-Beam Evaporator
- Negative photoresist: NFR-016D2 (2.5 $\mu m)$
- Developer: MF-319
- Ultrasonic for lift-off

Fabrication steps for the MM_{ABCD} emitter using contact photolithography, metal deposition, and lift-off.