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Background

• Motivation
• Increasing gap between SDS in cloud capability vs algorithm development 

needs
• SAR data can aid in decision making for floods, earthquakes, and other 

monitoring and response scenarios where rapid information for situational 
awareness is required.

• Increasing international SAR observations
• SAR intrinsically high data volume, compute, and variety of algorithm 

analysis methods.

• Analytic Collaborative Framework (ACF)
• Address disconnect between algorithm development and large-scale 

Science Data Systems (SDSes) in the cloud
• Enables more rapid time to market from algorithm development to data 

product generation, production, validation
• Facilitating algorithm development of multi-temporal and full resolution 

SAR analysis
• Prototype on-demand processing to “Analysis Ready Data (ARD)”-like data 

for SAR



3

Objectives

• Address need for rapid & scalable algorithm development 
environment

• Provides pathways for algorithms to run at large-scale science data 
systems and corresponding efficient handling of voluminous 
datasets.

• Increase accessibility of multi-sensor SAR analysis to users
• Assess Analysis Ready Data (ARD)-like on-demand generation to 

ease SAR use
• Assess more more cost-efficient compute approaches for these larger 

L2 and L3 analysis, which is already becoming a bottleneck for effective 
algorithm development and analysis.

• Demonstrate multi-cloud (AWS, Google Cloud Platform, Azure) and 
NASA HEC (Pleiades) approach to on-demand processing

• Leverage Machine Learning-based cost optimization across multi-
cloud



4

Objectives / Tech Advance
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DPM1 DPM2/3

Before/After Scenes
Processing: 1 hour
“Downloading”: 1.5 hours

Time Series of Scenes
Processing: 26 days
“Downloading”: 40 hours

Need for Algorithm Development—at Scale

Landslides Triggered by the M6.6 Hokkaido Earthquake (Sept 2018)

Source: Sang-Ho Yun, Jungkyo Jung
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Example On-demand SAR Products and Analysis with 
Sentinel-1A/B
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Source: Eric Fielding (JPL)

Source: Sang-Ho Yun (JPL)

Source: Giangi Sacco (JPL)
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NISAR and SWOT On-demand Needs

This AIST’s technology demonstration is in alignment with NISAR and 
SWOT’s on-demand needs :

1. Type A: “Tunable” On-Demand Processing
• “Bring your own parameters” scenario
• Trigger SDS to run standard product PGEs with custom tunable parameters.

– Example: Re-run L2 GUNW generation but with nearest 3 neighbor pairing strategy (small-
scale and large-scale processing in AWS).

2. Type B: Science Notebook Development Environment (for L1-L3 Cal/Val 
and ADT)
• “Bring your own code” scenario
• A Juypter notebook algorithm development environment that is collocated with SDS

– Example: Running ISCE3 in a Juypter notebook next to L1 SLC data generated by SDS
• Running notebooks at-scale in SDS

– Example: Running global biomass estimate using custom L2 biomass model

3. Type C: Automatic Generation of Custom Products in Keep-Up Mode 
“Subscription” scenario
• Triggering your own code or custom parameters based on new data stream
• Allows custom code for urgent response and forward stream processing.

– Example: Set up a variant of coherence change detection algorithm to run automatically for 
any new L1 SLC acquisitions.
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Key Concepts

Analytics 
Optimized Data 

Services 
(AODS)

Analysis Users

Data 
Analysis

Pre-
Processing
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Read Data 

(ARD)

Science, 
Algorithm, & Tool 
Developers
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Value-
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Products

Operator

Data 
Processing

Multi-Mission 
DataStandard 

Products

• Algorithm development environment (Jupyter notebooks)
• Collocated in cloud with science data processing
• Algorithm test bed –at scale
• “ARD-like” SAR data for easier analysis
• Events catalog to natural events
• Production Rules Triggers to link events to automated analysis via user’s notebooks

Earth 
Observatory 

Natural 
Events 

Production 
Rules
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Concept of Jupyter Notebooks Orchestration
at Scale

Earth 
Observatory 

Natural 
Events 

Standard 
Products 
& ARDs

Output 
Dataset

Production 
Rules

Repeat

Run at Scale in SDS

Algorithm Development Environment
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SAR Algorithms in Jupyter Notebooks 
Collocated with DAAC in AWS

Notebook running collocated with ASF 
DAAC in AWS us-west-2 (Oregon region)

Discovery/Access of Sentinel-1 
ancillary orbits from ESA

Discovery/Access of Sentinel-1 
L1 IW_SLC from ASF DAAC
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SAR Algorithms in Jupyter Notebooks 
Collocated with DAAC in AWS

Sentinel-1A/B GUNW processing
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Automating Science Notebooks into 
Executable Containers

• Enable running same Jupyter notebooks at scale in SDS
– Enables running large analysis with notebooks across collection of data

• Automated generation of Jupyter notebooks as executable containers
– Building annotated science notebooks to execute with open source tool 

papermill, then Containerize, and deploy to SDS—to run at scale
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ARD-like Coregistered SLC Stack Generation

• Coregistration of of SLCs 
into geocoded stacks

• ARD-like stack as basis of 
other SAR analysis
– Damage proxy maps
– Flood proxy map
– High resolution 

displacement time series
• Ported to run in Jupyter

notebook and deployable 
into SDS

• Updates to align with 
latest ISCE2 open source 
development

• Benchmarked and 
optimized performance 
runs with multi-core 
parallelization

c5d.9xlarge
(36 vCPU, 72 GiB)

c5.24xlarge
(96 vCPU, 192 GiB)

x1e.2xlarge
(8 vCPU, 244 GiB)

1 year (~30 SLCS, 4 bursts) 7 hrs, 24 mins, 46 
secs 4 hrs, 38 mins, 33 secs

2 years (~60 SLCS, 4 bursts) 13 hrs, 37 mins, 39 
secs 8 hrs, 16 min, 46 secs

1.7 years (54 SLCS) Beirut 2.63 hrs (50% HT)

2.7 years (84 SLCS) Beirut 4.09 hrs (50% HT)

0.7 years (26 SLCs) Beirut 2.76 hrs (50% HT)
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Example Potential of SAR Analysis
Notebooks at Scale

• Approach for ARD-like Sentinel-1 SLC stack 
generation—at scale

– Each SLC footprint stack processing is deployed to run at 
scale in SDS via Containerized Jupyter notebooks

• Parallelization speed up
– Coarse grain parallelization: scale up parallel SLC 

stack notebooks to run in parallel in SDS in AWS
– Fine graine parallelization: each notebook 

leverages multi-core processing
• Addressing costs

– Leverage lower costs AWS spot market 
instances for deploying Jupyter notebooks at 
scale

– Dispatch same jobs to NASA Pleiades for “free” 
compute (via SBU allocations)

– * Operational costs of these kinds of large 
processing jobs are outside the scope of this 
AIST technology demonstration

(upper-left) Sentinel-1A/B ascending track over U.S. 
: ~650 parallel stack processor jobs running at scale

(lower-left) Sentinel-1A/B descending track over 
U.S. : ~426 parallel stack processor jobs running 
at scale

1076 x 1-year (~30 SLCs) coregistered SLC stacks:

10-months to process in parallel 36-core 
machine

vs

8 hours in this on-demand ACF

à Enables more rapid algorithm development 
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Notebooks at Scale: ML-based Deformation 
Anomaly Detection for Potential Landslides

(above) The heatmap of the max displacement. Time series spread 
shows the locations of prediction as red dots

(left) Jupyter notebook for neural network-based machine learning 
for detecting temporal signals in MintPy-generated displacement 
time series products. Notebook can be deployed as Docker 
container running at scale over large geographical areas.



16

Integration of NASA EONET Events to Automate 
Triggering of Deformation Processing

• Goal: to provide natural events as 
“triggers” for automating data 
processing with “notebook 
algorithms”

• NASA Earth Observatory Natural 
Event Tracker (EONET)

– Providing a curated source of 
continuously updated natural event 
metadata.

• Curated Events
– Severe Storms: Tropical Cyclones

• National Hurricane Center
• Joint Typhoon Warning Center

– Volcanoes
• Smithsonian/USGS Weekly 

Volcanic Activity Report
– Wildfires

• Alberta Wildfire
• British Columbia Wildfire Service
• California Department of Forestry 

and Fire Protection
• InciWeb
• Manitoba Wildfire Program
• Pacific Disaster Center

– Sea and Lake Ice: icebergs
• National Ice Center

Continuous ingest of 
EONET events into 
analysis environment
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Open Science Implications for ACF

"From Open Data to Open Science." Earth and 
Space Science [doi:10.1029/2020EA001562]
https://agupubs.onlinelibrary.wiley.com/doi
/10.1029/2020EA001562

https://nasadaacs.eos.nasa.gov/esds/open-science

• Open Data
– NASA has free and open data distributed by DAACs

• Open Access
– DAACs provide access to open data

• Open Source
– Algorithms, software, code, production system artifacts 

are open source
– Development done in the open

• Open Cyberinfrastructure
– Analysis platforms are open, accessible, interoperable, 

contributable
• Collaboration

– Scientific research is sharable in collaborative 
environments

– Development of algorithms (and system) are done in open 
and collaborative manner

• Provenance and reproducibility
– Are the data production and analysis steps preserved in a 

way that can be reproduced?
– By the same system and/or by others?

• Open Knowledge Dissemination
– Sharing and publishing in open-access journals

• Impacts
– Measuring science impact of earth science data records 

(ESDRs)
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Open Geospatial Consortium (OGC)
Relevance to Open Science and ACF

• Adhering to these OGC specs helps to open up the ACF approach 
towards Open Science

• Instills open and collaborative algorithm development, distributed
teams, and interoperability across systems

• OGC is an international standards body.
– They do not define implementations.

• OGC specifications instills interoperable architectural design patterns

• Open and international standards fosters community 
implementations and interoperability via interoperable service 
interfaces

• Interoperability as basis for provenance and reproducibility
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Factoring in OGC Interoperability for Open Science

Algorithm 
Catalog

Code Repositories

CI/CD

Dataset Index 
(collection & 

granules)

Processing
ADES

WPS-T

Data

Application 
Package

Checks in/out code

On-demand 
jobs

Build algorithm runtimes

Checks out code

Registers Executable 
Algorithms

Loads Executable 
Algorithms

Metadata

Data

ADE

DAPA

Papermill
repo2docker

STAC

STAC

Processing
ADES

Processing 
Cluster

ADES

Algorithm Development Environment

Data Management

Processing
S3 Orchestration CWL

• OGC Earth Observation 
Applications Pilot

• OGC Testbed 13 to 17 have 
relevant specifications

• Application Deployment and 
Execution Service (ADES)

• Web Processing Service 
Transactional (WPS-T)

• Application Package (portal 
containerized jobs)

• SpatioTemporal Asset 
Catalog (STAC)

• Data Access and Processing 
API (DAPA)

• Command Workflow 
Language (CWL) Opportunities for cost savings
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Addressing SAR Analysis Cloud Costs

• Large compute needs and costs of SDSes in both NISAR and SWOT
• Address vendor lock-in issues
• Early cost analysis shows potential for savings across multi-cloud

* Cost estimates are examples based on publicly advertised “rack rate” costs for spot/preemptive compute. 
Actuals will vary depending on market demand and cloud reseller rates.
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Running Jupyter Notebooks at Scale across 
Multi-Cloud and HEC

ADES-EKS

ASGASGASG

Algorithm containers
(papermilled + 
repo2Docker)

ADES-GKE

ASGASGASG

ADES-AKS

ASGASGK8S

ADES-PBS

HEC 
Pleiades

PBS

Event 
Metrics

WPST_SQS

Publicly Reachable

Preemptive 
instances

Preemptive 
instancesspot instances

Algorithm Runtime 
Performance and Cloud 
Cost model

ML temporal forecasting-
based model from 
metrics

Pushes 
jobs into 
ADES qsub

Behind firewall / VPC

Application 
Package 
Registry

“Algorithm Catalog”

Public VPC

WPST_SQS
_listenerWPST_SQS

_listener
WPST_SQS
_listener

WPST_SQS
_listener

Submits On-demand jobs

Pushes 
jobs into 
ADES 

public AWS SQS as broker:

● Dev-Sec-Ops
● Addresses cybersecurity across 

distributed ADES clusters

DAPA DAPA DAPA DAPA

Application Descriptor 
JSON

NAT

Code Repositories

CI/CD

Checks in/out code

Build algorithm 
runtimes

Checks out 
code

Papermill
repo2docker

SQS

Estimated Cost and 
Time to Completion

Science Data Processing

Registers Algorithm into 
Processing Cluster

Algorithm Development
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Multi-Cloud 
Forecast 

Cost Model

§ ECC on AWS
§ ECC on GCP
§ ECC on Azure

§ ETC on AWS
§ ETC on GCP
§ ETC on Azure

Analytics of 
Science Data 
Processing

ML-based 
Forecasts of 

Metrics

Analytics

Forecasted 
Metrics

Multi-Cloud Costs

Multi-Cloud Processing

Metrics

Collecting Metrics for ML-based Forecasting
and Estimates

Estimated 
Cost to 
Completion

Estimated 
Time to 
Completion
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Prototyped Auto-scaling Compute Across AWS 
and NASA HEC Pleiades

• Initial effort started under 
ESI funding for ARIA in HEC 
(PI: Sue Owen)

• Auto-scaling of 
Containerized SAR 
processing across AWS and 
Pleiades

• Developed parity of auto-
scaling across in AWS with 
HECC

• Algorithms deployed to run 
at scale in AWS can also 
run on Pleiades (Singularity 
Containers)

• Optimizes compute use on 
Pleiades via auto-scaled 
single-node jobs
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NISAR SDS Infusion for
On-Demand Processing

• AIST task contributions to open source software 
used by NISAR SDS and SWOT SDS

• Coordination with NISAR SDS contributing to the 
on-demand algorithm development and test bed 
environment

• Use cases for Cal/Val and ADT
• Science team already started exploring 

science notebooks for algorithms
• Algorithm improvement and data product 

validation

• NISAR SDS deployed on-demand system for 
NISAR Science Team

• Shares common based system developed 
in this AIST

• Algorithms in Jupyter notebooks are 
deployable as Docker containers running at 
scale in SDS

• NISAR SDS current baseline in AWS only
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Key Points

• Motivation
• Address need for rapid & scalable algorithm development 

environment supporting use cases of algorithm development, data 
product generation, production, and product validation

• Assess more more cost-efficient compute approaches for larger L2 
and L3 analysis

• Approach
• Integrated algorithm development environment (ADE) and SDS for 

running algorithms in Jupyter notebooks to run on-demand and at 
scale in SDS

• Demonstration SAR algorithms in Jupyter notebooks for Sentinel-1 
data as proxy for NISAR:

• Sentinel-1 coregistered SLC stacks
• Sentinel-1 GUNW
• ML temporal anomaly detection (potential landslides)

• On-demand processing across multi-cloud (AWS, GCP, Azure) and
NASA HEC Pleiades

• Collect processing metrics to forecast estimate costs/time to 
completion
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Acronyms
List of Acronyms

• ADE Algorithm Development Environment
• ADES Application Deployment and Execution Service
• ADT Algorithm Development Team
• ARD Analysis Ready Data
• AODS Analysis Optimized Data Services
• AWS Amazon Web Services
• CWL Command Workflow Language (CWL)
• DAPA Data Access and Processing API
• DPM Damage Proxy Map
• EONET Earth Observatory Network Event Tracker
• FPM Flood Proxy Map
• GCP Google Cloud Services
• HEC High End Computing
• HPC High Performance Computing
• HySDS Hybrid Cloud Science Data System
• InSAR Interferometric Synthetic Aperture Radar
• OGC Open Geospatial Consortium 
• PGE Product Generation Executive
• PS time series Persistent Scatter time series
• SAR Synthetic Aperture Radar
• SDS Science Data System
• SLC Single Looks Complex
• STAC SpatioTemporal Asset Catalog
• WPS-T Web Processing Service Transactional (WPS-T)


