Simplified Gravitational Reference Sensors for Future Earth Geodesy Missions

John W. Conklin* for the IIP team

*jwconklin@ufl.edu

John W. Conklin, ESTF2021, 1 July 2021
Science Motivation

- Low-Low Sat-to-Sat Tracking missions, like GRACE & GRACE-FO, are vital for measuring mass transport over the surface of the Earth
 - Ice sheets, glaciers, underground water storage, large lakes & rivers, sea level
- LL-SST missions like GRACE-FO that use laser interferometry are technologically limited by accelerometer accuracy
 - Laser ranging measures variations in intersatellite distance due to gravity
 - Accelerometers account for non-gravitational motion of the two spacecraft
 - GPS receivers used for orbit determination

For future Earth gravity field mapping missions beyond GRACE-FO

Example Earth Science outcome: Mapping changes in land water storage
Current Measurement Systems Limited by Accelerometers

- Improved inertial sensing would allow future missions to take advantage of improvements made by laser ranging interferometry.
- Temporal aliasing models continue to improve; eventually down to instrument noise limit.
- Mass Change DO Study Team identified improved accelerometers as most important technology need for future missions.
- ESA-NASA LISA Pathfinder (2015/16) demonstrated $>10^4$ improvement over GRACE-FO.
The Simplified Gravitational Reference Sensor

- High-TRL LISA Pathfinder GRS includes:
 - Test mass and electrode housing contained within a vacuum enclosure
 - Test mass caging (launch lock) mechanism
 - Charge management system (developed by UF for LISA)
 - Front End Electronics
- Requires quiet thermal, EM, gravitational environment
- Goal: Use Pathfinder heritage to improve performance compared to electrostatic accelerometers by:
 - Replacing test mass grounding wire with a non-contact UV photoemission-based charge management system
 - Allows large TM (0.5 kg) and TM-housing gap (~mm)
 - Venting to space lowers residual pressure and improves thermal isolation
 - Tightly integrate S-GRS and laser interferometer, eliminating microwave ranging instrument
 - Drag-compensation improves performance further by reducing test actuation noise
S-GRS Performance Modeling

- Two operational scenarios selected:
 - Non-drag-compensated at 500 km altitude (e.g. GRACE-FO)
 - Drag-compensated spacecraft at 350 km

Operated as an accelerometer based on GRACE-FO flight environment

Operated on a drag-compensated spacecraft
UF Torsion Pendulum

- Test-bed for precision inertial sensors
- 1 m, 50 µm diameter fiber supports cross bar with 4 hollow TMs (rotation → translation)
- Light (0.46 kg) Al structure reduces needed fiber diameter
- Capacitive (15 nm/Hz$^{1/2}$) + IFO (0.2 nm/Hz$^{1/2}$) readouts
UF Torsion Pendulum

- Test-bed for precision inertial sensors
- 1 m, 50 μm diameter fiber supports cross bar with 4 hollow TMs (rotation → translation)
- Light (0.46 kg) Al structure reduces needed fiber diameter
- Capacitive (15 nm/Hz\(^{1/2}\)) + IFO (0.1 nm/Hz\(^{1/2}\)) readouts

John W. Conklin, ESTF2021, 1 July 2021
S-GRS Development Highlights

- S-GRS electronics enclosure based on LISA
 - ~15 W power consumption; TRL 6 by 2022
- Low mass mechanical design
 - <10 kg sensor head, <5 kg electronics
- Numerical dynamics models
 - TM release, test mass control, drag-compensation

S-GRS Simulated Control Performance

TRL 5 LISA Charge Management Device (University of Florida)
S-GRS Project Long-term Vision

GRACE (2002)
First Low-Low Sat-to-Sat Tracking (LL-SST) mission, includes microwave ranging + electrostatic accelerometers

GRACE-FO (2018)
Laser Ranging Interferometer (LRI) tech demo improves intersat range sensitivity

Next MC Mission (~2027)
S-GRS as tech demo would improve non-gravity acceleration measurement consistent with LRI sensitivity

Future (2030’s)
Low-cost small satellite constellations improve spatio-temporal resolution

- Current IIP-IDC grant + LISA: TRL 3-5 by end of 2021
- Follow-on IIP-IDD (planned proposal): TRL 5-6 by 2024

John W. Conklin, ESTF2021, 1 July 2021