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PROMICE AWS Thu-L GreenlandPROMICE AWS  THU-L GCNet AWS  Saddle

Science Application: Adjust Radiometry for Tilt
("virtual" inclinometer << $$$ than physical retrofit)



JAWS: Justified Automatic Weather Station Data

Objective
Interoperability: Enable automated analyses  (statistics, subsets, 
assimilation, intercomparison) and discovery of AWS-like data for 
weather/climate research

Strategy
Harmonize idiosyncratic L2 ASCII formats into L3 netCDF format 
with standardized metadata and value-added data

Implementation
Open source Python code at http://github.com/jaws/jaws
> conda install -c conda-forge jaws
> pip install jaws
> jaws L2_in.txt L3_out.nc
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JAWS: Current and Historic AWS
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Raw AWS Data Distributed as Idiosyncratic ASCII
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JAWS Value-Added Data

Current
Solar zenith angle, GPS-derived ice velocity 
Extrapolated standard variables (T2m, T10m, U10m, Fsw…)
New: Tilt/rotation angles from RIGB
New: Bulk formulation sensible, latent heat estimates
New: Surface energy budget

Future
Longwave and wind direction adjustments
Roughness length

Issues
Common names for standard variables (T10,...), quality control
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Science Enabled by Polar AWS and JAWS

● Numerical Weather Prediction
● Ground Truth for Satellite/Model/Analyses
● Measure Surface Energy Budget:

○ Heat
○ Precipitation
○ Radiation/Albedo

● Estimate:
○ Cloud Radiative Effects
○ Snow/Ice Melt
○ Snow Depth/Age/Thermal Properties
○ Surface Mass Balance
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JAWS netCDF Data Easily Processed...

# Process PROMICE KanU L2 data for 2009-2017

jaws promice_Kangerlussuaq-U_20090404_20170916.txt \

~/promice_KanU.nc

# Average to obtain climatological mean

ncra -O ~/promice_KanU.nc ~/promice_KanU_clm.nc

# Graphics

jaws -a diurnal -v air_temperature -y 2014 -m 5 

promice_KanU.nc

jaws -a monthly -v air_temperature -y 2014 -m 5 

promice_KanU.nc

jaws -a annual -v air_temperature -y 2014 

promice_KanU.nc

jaws -a seasonal -v air_temperature promice_KanU.nc
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JAWS Graphics
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Monthly Diurnal Ranges
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Annual Cycles
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Climatological Seasonal Cycles



Data Are Intercomparable Across Networks 
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Station Outlier Detection 
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JAWS Tilt-Correction Improves Accuracy ~11 W/m2 
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Tilted Radiometry Biases Surface Energy Budget
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Wang et al., 2016, TC
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RIGB-adjusted SW↓ Reduces RMS Bias vs. Satellites

Unadjusted RIGB

CERES 85.49 57.35

MERRA-2 84.47 56.48

Table 1. RMSD of SW↓ (W/m2)

GC-Net South Dome, May-Sept, 2008-2013

Unadjusted RIGB

CERES 0.98 0.99

MERRA-2 0.98 0.99

Table 2. Correlation of SW↓



JAWS Reveals Bi-Modal Diurnal Surface Processes

Lines represent 
different regions

Temporal Characteristics of Cloud Radiative Effects on Greenland: Discoveries from 
Multi-year Automatic Weather Station Measurements (Wang et al., 2018, JGR)
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Ground-truth satellites, models, reanalyses

Cloud Radiative Effects “Warm center” distribution:

?AWS

Spatial distribution of melt-season cloud radiative effects over Greenland: 
Evaluating satellite observations, reanalyses, and model simulations against in 

situ measurements (Wang et al., 2019, JGR)
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Longwave Fair: MERRA-2, ERA-I, ERA5     
Poor:LENS, E3SM
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Wang et al., 2019, JGR

Ground-truth satellites, models, reanalyses

Spatial correlation between CRE and its determining factors



Sparse sampling → “warm L” in CALIPSO

van Tricht  et al. 2016

CALIPSO/CloudSAT: 21 W/m2
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Wang et. al., 2019, JGR
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Partition Relative Contributions to Surface Melt

Wang et al., 2019, In Progress



Evaluate Earth System Model Simulations
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JAWS       E3SM-climo E3SM-hist



Shows ~25% Larsen C Annual Melt in Polar Night

AWS18 Larsen C IMAU
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Elvidge et al., 2016; Zou et al., 2018

Lennarts et al., 2018

Foehn Wind Katabatic Wind

Winds
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FonDA Foehn/katabatic Detection Algorithm 
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FonDA uses variable thresholds to identify wind events 

● Temperature  > 0 ℃
● Relative Humidity (RH) < 30th 

percentile

● Wind Speed > 60th percentile

AWS 18



Training Dataset for Machine Learning
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ML-FonDA Detects foehn/katabatic winds in MERRA2:

Gradient Boosting Classification:
● Ensemble of weak prediction models
● Decision Trees

Xc= MERRA2 Data          Yf = FonDA results
(Large Scale)             (Small Scale)



Machine Learning Improves Detection
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F1-Score is a statistical analysis tool used to assess the accuracy of a model
when using binary classification.

Confusion Matrix

Negative Positive

Negative True Negative False Positive

Positive False Negative True Positive

Precision Recall F1-Score

Machine Learning FonDA 0.771 0.664 0.719

MERRA2/ERA5 FonDA 0.558 0.496 0.525

Machine Learning FonDA

AWS FonDA



Larsen-C Ice Shelf Climatology and Melt
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● Large sensible heat fluxes dominate the 
surface energy budget with a mean energy 
flux of 66.4 W/m2 

● Increased SW radiation during polar day 
foehn 

● No melt recorded without the presence of 
foehn.

Note: SW and sensible heat fluxes are positive and add energy 
to the surface, LW and latent heat fluxes are negative and 
remove heat from the surface.



Summary

AWS data underutilized due to idiosyncratic, archaic formats

JAWS harmonizes AWS formats for networks, users

Interoperability increases scale/scope of AWS-enabled research

Needs:
Wider use and endorsement 

Suggestions for features and improvements

Feedback on usability, naming conventions
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Supplementary 
Slides
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Documentation



CF & ACDD-Compliance
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GCNet AWS  NEEM Greenland



Larsen C Ice Shelf is vulnerable to disintegration 

Credit: PRI

Larsen C 
Ice Shelf
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JAWS Graphics
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JAWS Graphics
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JAWS Graphics



41

JAWS Graphics


