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Summary of Year 2 Activities

Major Activities
• Implementation of (200x200) low NA TuLIPSS

system
• Development of calibration method
• Demonstration and validation of spatial-spectral 

tuning
• Design of opto-mechanics for the ruggedized 

system
• Throughput and science application analysis
• In-lab and remote imaging with TuLLIPSS

system
• Publication of SNAP-IMS reference imaging (in 

flight) in Journal of Applied Remote Sensing
• Fiber based spectrometer Optics Express paper 

(submitted)

Presentation Outline
• Low NA fiber bundle fabrication
• Calibration Algorithm
• Fiber bundle tuning and cycle testing
• Opto-mechanical design of TuLIPSS system
• Imaging Results with static Tulips Prototype
• Initial Prototype of a Benchtop SWIR TuLIPSS

system
• Summary



FIBER BUNDLE ASSEMBLY



Breaking Down the Image
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Figure 1. Imaging sequence for a 3D (x,y,l) Object Cube to a 2D CCD array using the ISS system concept 



General System Layout



High Level Layout of the TuLIPSS System
Approach: Spatial Spectral Tuning achieved via actuated fiber bundle and changeable filters/disperser

*The phase calibration module usage is not mandatory once
TuLIPSS is deployed in the field
** The actuator that compresses/decompresses
the fiber ribbons
*** The Double-Amici is an example in general goal is to keep axis
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FIBER BUNDLE



Static System – Optical System Operational Space



Solutions to maximize light collection

• Lower NA of the fiber
• Small outer diameter fiber
• Lenslets at fiber tips



Cutting and assembling procedure

Ribbon cutting location



Cutting and assembling procedure

Diamond 
saw

Stack 45 
layers



Assembled fiber bundle before cutting

Cutting Cutting

Input side(100X90)
Output side 
(200X45)

with ~400um gap
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Fiber bundle
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Throughput Uniformity Comparison:
0.28 NA vs 0.65 NA



0.65 NA and 0.28 NA fiber bundle
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Same field compared



Same field compared

Column-wise 
average

Column-wise 
average



Column-wise averaged intensity Column-wise averaged intensity



Low NA show more uniform values across FOV



CALIBRATION ALGORITHM



Spectral calibration procedure

Step 1: Locate 3 single wavelengths using 1-
nm filters: 488nm, 514nm, 633nm

Step 2: second-order polynomial 
interpolation for 450nm – 750nm



Spatial calibration: setup

Projector: Project sinusoidal patterns Camera: takes raw 
images

Sinusoidal patterns Raw images



Spatial calibration: principle
sinusoidal patterns raw images
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FIBER BUNDLE TUNING AND 
CYCLE TESTING



Foam sheet tuning

Foam test



Materials Used for Tunable Fiber Bundle

Two classes of compressible materials that can be introduced between fiber 
ribbons were tested in the lab

1. Rubbers - PDMS (prepared in the lab) 
• limited compressibility
• bulging at extremities – obstruction of fibers’ output

2. Polyurethanes (foams) 
• Cost-effective, off the shelf material - PORONTM produced by Rogers Corporation
• Excellent  compression results after thousands of compression cycles



Characteristics of Roger’s Co. PORONTM material

PORON foam official specifications

Required specifications
ref: https://www.sspinc.com/silicones_that_work/Outgassing-EMI-Silicones-and-ASTM-E595-07-_83-blog.htm 



Preliminary testing – experiment 1
– PORONTM foam and transparent plastic layers were laser cut and placed in a translation stage used as vise

Validation experiments for compressible material

Transparent film 
(0.11 mm)

PORONTM foam 
(0.53 mm)

Vise

compression compression

compression

decompression



Video frame snapshots for different compressions of PORON foam

Fiber ribbonsFoam sheets

Fiber ribbons + 
PORON foam

Preliminary testing – Experiment 2
Simple compression test featuring PORON foam and illuminated fiber bundles 

Validation experiments for compressible material



Tunable Fiber Bundle Design
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Test foil or fiber ribbon
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Close snapshot of the automated foam compressor
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Validation experiment for compressible material



Real-time video of the compression sequence during validation experiment
More than 20,000 compression cycles were performed to test PORON’s compression reliability



• Experiment 1 – match between individual foam sheets’ baseline configuration thicknesses after more than 10000 
compression cycles

Foam/plastic sheets image as recorded for 
processing

plastic sheets 
foam sheets

px  600 reference row



• Experiment 2 - match between individual foam sheets displacements after more 
than 20,000 compression cycles – compression state

Video showing the compression state of the foam sheets for 1000 cycles



• Experiment 3 – Compression/Decompression plots show traces after more than 22,000 compression cycles
- 1.8 seconds compression followed by 1.8 second decompression
- Match between individual foam sheets displacements in their decompressed baseline configuration*

*

Compression plots at pixel 600 on vertical Decompression plots at pixel 600 on vertical

• Decompressed baseline configuration is defined as slightly compressed state of the foam. Also, a slight re-centering of the foam sheets
inside the acrylic case was performed due to some mechanical friction during the compression from 11000th to 21000th compression cycles  



IMAGING RESULTS WITH 
STATIC TULIPSS PROTOTYPE



Principle and fabrication



Lenslet vs Mask Options



(a) (b) (c) (d)

Zemax simulations



Benchtop Prototype
• Approx. 30,000+ (188x170) spatial points
• 60+ spectral values, VIS range
• Volume 60x15x15 cm3
• Max. readout rate 3.6 frames/sec, integration time 75-400ms  



Calibration



Calibration



Flat Field Correction



Spectral resolution

Wavelength/nm 488 514 532 589 633
Average FWHM �
STD across FOV 
/nm

9.04 � 2.68 8.81 � 2.81 9.49 � 2.73 12.83 � 4.13 13.09 � 4.44



Crosstalk 

Pitch (10um pinhole) Custom (6 cores/block) 31.5um (4 cores/block) 37um (3 cores/block)

Crosstalk 49.7% 27.5% 18.2%

Std 17.9% 11.6% 2.6%

Pinhole diameter 
(31.5um pitch)

10um 7.5um 5um

Crosstalk 27.5% 25.2% 22.7%

Std 11.6% 17.2% 13.4%

Lenslet array: 22.0% �
13.9%
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Traffic video imaging

Field of view 
(RGB image, 
DSLR camera)

Mirror to 
image campus 
landscape, 
(angle not 
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Urban traffic 
hyperspectral video 



SWIR – INITIAL PROTOTYPE



SWIR TuLIPSS Preliminary Setup
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Optical schematics





ref. 1- Detection of Bruises on Apples Using NIR Hyperspectral Imaging – R. Lu

ref. 1 



TuLIPSS - Current Activities/ Improvements / Summary

• Decreasing bundle dimensions –
smaller individual fiber diameter 
(10 microns and below)

• Optimizing throughput – fiber 
NA and optimized optical system

• Increasing spatial sampling 
(targeted 400x400)

• Elastic tuning (1-2 second mode 
switching) of fiber distance

• Dispersion and bandwidth tuning 
(selection of sub-bands and 
spectral sampling)

• ROI dynamic range tuning
• Incorporating SWIR range

• Field distribution techniques 
can effectively enable fast non 
scanning imaging

• Field distribution techniques 
require limited data 
reconstruction

• Tuning of spectral – spatial 
content will allow optimization 
of data transfer and SNR

Details of design and imaging results are 
presented in:
Ye Wang, Michal E. Pawlowski, Shuna Cheng, 
Jason G. Dwight, Razvan I. Stoian, Jiawei Lu, 
David Alexander, and Tomasz S. Tkaczyk, "Light-
guide snapshot imaging spectrometer for remote 
sensing applications," Opt. Express 27, 15701-
15725 (2019)


