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Coherent 2-Micron Wind Lidar Technology 

Advancement for Space

 NASA ESTO supported 3-year effort (2017 – 2020)

 Deliverables

• Conceptual design of a space mission and instrument that proves the 

feasibility of returning wind science from space

• Operational ground-based coherent detection lidar demonstrator 

instrument focusing on undemonstrated coherent-detection Doppler 

wind lidar components required for space

• Roadmap going forward that shows an understanding of the current 

design gaps and a logical progression towards a space mission

Why Coherent Detection is Important

 Accurate Velocity Measurement

• Aerosols much heavier than molecules; less Brownian motion

• Long laser pulse for narrow spectral width; Atmosphere dominated 

signal spectral width; Full signal spectrum captured

• Processing in software more flexible than using optical elements

• Frequency estimation; not intensity estimation

• Result: LOS velocity error ~ 10 – 100% of signal spectral width

• Shot averaging, surface return, contextual information, etc. further 

reduces LOS error

 High Photon Efficiency

• Heterodyne detection with LO provides immunity to background light 

and Sufficient LO power on detector effectively eliminates all noise 

except quantum noise; Spectral processing in software permits narrow 

effective receiver bandwidth

• Frequency estimation more photon efficient than intensity estimation

• Result:  Excellent horizontal & vertical resolution, Equal day/night 

operation

 Multiple Data Processing Options & Additional Data Products

• Multiple trades of resolution, aerosol sensitivity, probability of outliers, 

velocity search space, etc. 

• Wind turbulence (second moment)

Threshold Goal Achieved

FOM 2.22 (1.33 CPEX) 3.14 3.48

Energy (mJ) 42 @200 Hz 56 @200 Hz 60@200 Hz

Pulse Width (ns) ≥150 ≥180 200 

Power (W) 8.4 11.2 12.02

 A major technical 

challenge for the SP 

laser is the pulse 

width requirement.

 MOPA architecture 

found to be efficient 

to achieve the goal.
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 Two major sub-assemblies

• Slave Oscillator (SO) high 
power unit

• Master oscillator Local 
oscillator (MOLO) lower 
power unit

 IPG laser will be initially used.

Project Team

• NASA Langley Research Center, Lead – Pulsed transmitter laser, 

electronics, structure, computer control, data processing

• Beyond Photonics – CW lasers, optical bench, transceiver 

enclosure, electronics

• Simpson Weather Associates, Science Lead – mission concept, 

Lidar parameter trades, advanced processing algorithms

• Fibertek – Tm fiber pump laser
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Auto-Alignment BPLO WDM Fiber Coupler

 Receiver auto-alignment approach uses a small low power 
continuously present back propagated local oscillator (BPLO) laser 
that is well offset in wavelength from the Lidar transmitter to prevent 
interference with transmitter/LO, but still perfectly represents single 
mode RCVR pointing in space

 A low loss WDM fiber coupler is required to inject the BPLO light into 
the receiver.
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Summary

 The SP laser performance has been demonstrated that exceeds the 
design goals. The detail design is nearly completed.

 Completed the Swift MO/LO lasers laboratory test and associated 
control electronics

 Auto-Alignment subsystem procure and fab schedule consistent with 
Wind-SP build schedule

 Completed the build of Low-Power Module enclosure & bench
 Completed the SP transceiver detail design

Wind-SP transceiver / high power module 
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