Integrating Software and Hardware for New Observing Strategies

Joel T. Johnson
ElectroScience Laboratory
The Ohio State University

Earth Science Technology Forum Panel Discussion
6/12/19
What does the future look like?

- Future satellite sensing missions will most likely include adaptive sensors working with resource constraints and in collaborating constellations.
- Hardware already has these attributes/capabilities.
- Science gains: better data quality, avoiding recording/storing useless data, rapid response to events, “synoptic” observation capability.

- All extend the traditional “fixed sensor” paradigm that our community is used to and comfortable with.
 - Can we accept decisions about data acquisition being made autonomously? Key challenge is the perception of risk.
CubeRRT Example

• Radio Frequency Interference (RFI) processor aboard the CubeSat Radiometer RFI technology validation (CubeRRT) mission autonomously flags and removes RFI from microwave radiometer observations.

• Previously this had been performed on the ground at cost of greatly increased downlink bandwidth.
 • Due to perception of risk in discarding potentially useful data.

• CubeRRT RFI filtering is an “algorithmic” method that implements processing similar to that on the ground aboard the satellite.

• This technology is essential for future Earth observing microwave radiometers given the increasing presence of RFI.
 • We may not have a choice as to whether to allow on-board decision making!
Addressing Risk

• As with any mission prep, we should take steps from mission simulations to ground or airborne demonstrations to space testing to full scale mission
 • A “full scale” mission here may be a constellation of distributed CubeSats with differing sensor sets

• OSU AIST project is developing the STARS library to facilitate mission simulations
 • Case studies show advantages of new strategies

• ESTO’s New Observing Strategies Testbed an important step for additional demonstrations blending software and hardware capabilities
Next Steps

- Continue building community awareness of capabilities of hardware/software in achieving
 - Sensor adaptation
 - Resource management
 - Collaborating constellations and systems
 - Autonomous decision making

- Continue simulations and demonstrations of New Observing Strategy systems
 - Intelligent Earth Observation Network proposed as a Design Reference Mission (DRM)

- Build interactions with science community
 - Atmospheric applications seems like a good first target
 - Experiences rapid change that is of high science interest
 - A+CCP mission formulation ongoing