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Motivation

• Snow on the ground is a major source of fresh 
water around the globe
• Seasonal snow packs are changing with the climate
• Wideband Autocorrelation Radiometry (WiBAR) is
• Microwave, and thus has all weather capability
• Passive, and thus is relatively low power
• Sensitive to layered structures, 

and thus responds to snow depth, and not much else.  



Roadmap

• WiBAR theory of operation
• WiBAR instruments for snow packs
• 2018-19 experimental set-up
• Measurement results
• Conclusions



• Passive microwave measurement 
of the electrical distance b/t two interfaces
• Geophysical applications:

lake ice and dry snow pack

WiBAR physics
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WiBAR measurement approach:  
spectrum analysis
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WiBAR Measurement:  
the Frequency Spectrum

• The received power, !, at the spectrum analyzer:
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• Calibration: *̂(") =
!3456(") − !&6'(")

!8495:;< =>4<(") − !&6'(")

EmissivityPower Spectrum

?: Boltzmann’s constant
@ABA(C): radiometer system temperature
D(C): radiometer’s gain
@EFG(C): receiver noise temperature
@H: physical temperature of the target

Lake icepack measurement at IH = JK
South Sturgeon Lake, MN; 2018 Mar 07



WiBAR Measurement:  
the Autocorrelation Function

• Using the Wiener Khinchin theorem, the autocorrelation function, Φ(#), is:
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Autocorrelation Function

Ground truth:
0123 = 58 – 59.5 cm

4 5 : window function  

The signal is zero padded and a Hamming window is used for 4 5 . 
South Sturgeon Lake, MN; 67 = 89; 2018 Mar 07

Emissivity



Time Lag Angular Dependence
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Measurements from
Douglas Lake, MI;
2016 Mar 03.
Ground truth of 
14” thickness from 
augered hole.

τdelay ↓ as ϑ ↑
is a signature of 
a single-layered 
emitter.



Lake Ice Measurements

Theoretical values 
from ground truth and 
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Coherence Reducers
!"# $ = ##&'( ) *

) * = )+, -./ + 2)234 cos*$84-.9

Effects of surface roughness, volume scattering,
and finite beamwidth wrt incidence angle 
on the peak of the ACF at the desired lag, τice

H-pol eice is 
proportional to 
ACF at τ=τdelay

eno lag is 
proportional to 

ACF at τ=0

Surface Roughness appears 
to be the largest coherence
reducer for thin layers.  
ACF(τdelay)↑ as ϑ ↑

is a signature of 
a thin layered emitter.



Snow WiBAR measurement:
long wavelength & large bandwidth
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Thermoelectric cooler
(not implemented)

RF electronics

Horn antenna throat

C&DH electronics
(hidden from view)

Internet hardware

Video camera

L-band WiBAR hardware



S-band WiBAR
hardware



L-band and S-band WiBARs
deployed at U-Mich Bio Station



The snowpack

• (Time series of depth is forthcoming 

from our collaborators)

• Daily WiBAR fixed-angle observations:

• L-band:  2018 Nov 29 – 2019 Apr 16

• S-band:  2019 Mar 03 – 2019 Apr 16

• Intensive observations

• L-band only:  2018 Nov 25; 2019 Jan 04 – 05

• L- and S-bands:  2019 Mar 03 – 05 

• Intensive obs = elevation angular scans of 

the field, forest; external calibration msmts
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Some early hints of a signal

Signature of L-band 
antenna radome

Radio Frequency
Interference (RFI)
that leaks thru 
mitigation 
algorithms 
near grazing 
raises the noise floor

Peaks vary with 
incidence angle θ
are consistent with 
expectations:  
1.  τ ↓ as θ ↑ 
2.  ACF(τ) ↑ as θ ↑,
as for rough surfaces

These τ at ~3.5 ns 
are less than 
the snow depth,
which should be
~5 ns:  seeing the
ice lenses?



Conclusions

• WiBAR works extremely well for lake ice
• First systematic attempt in dry snow shows 

the WiBAR signal is harder to get
• Lots of Radio Frequency Interference 
• Surface roughness reduces coherence
• There might be a greater sensitivity to ice lenses 

than the snow depth itself
• Lots more processing to come…
• other days, 
• the other band (S-band), and 
• combining L- and S-bands together



Backup slides
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RFI mitigation
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