Integrated Receiver and Switching Technology (IRaST) for Cloud Ice Measurements and Water Vapor Sounding

6/13/2019

Caitlyn Cooke

William Deal

Kevin Leong

Pekka Kangaslahti

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

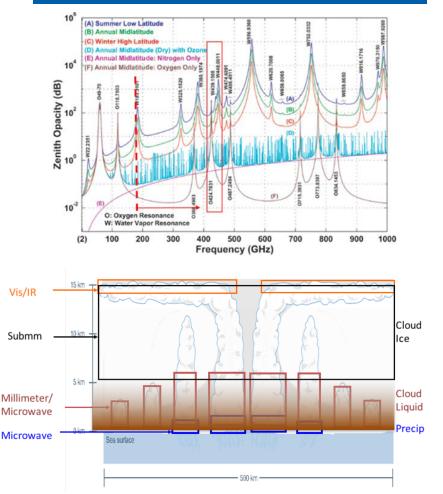
Outline

- Introduction
 - Background
 - Project goals
- 424 GHz and 448 GHz Integrated Receiver
 - Receiver Overview
 - 424-448 GHz chipset
- InP HEMT Switching Technology
 - Radiometric architecture trade study
 - Switching technology
 - Test component design
- Conclusion

Motivation

Motivation:

• Ice clouds are a major source of uncertainty in climate models.


Measurement Objective:

- Measure atmospheric water and oxygen content at heights of 4-16 km.
- Provide vertical profiles of upper atmosphere temperature, water vapor content, cloud ice particle microphysical properties.

OUR WORK:

- Improve the performance of submm-wave instrumentation from 118 GHz to far infrared.
- Reduce SWaP for compact low-cost instrument platforms such as CubeSats.

Microwave Absorption Spectrum

Integrated Receiver and Switch Technology (IRaST)

NORTHROP GRUMMAN

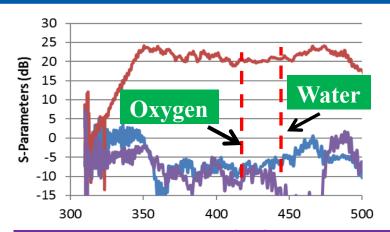
<u>Task 1 (IR)</u>:

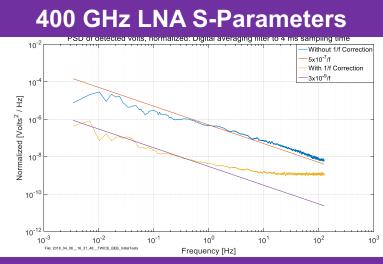
- Integrated 424 and 448 GHz receiver
- Atmospheric receiver temperature and humidity sounder in single receiver

<u>JPL:</u>

Pekka Kangaslahti (Co-I) Boon Lim (Co-I)

<u>Task 2 (ST)</u>:


 Develop Integrated Switch technology to eliminate 1/f noise in submillimeter wave direct detection receivers

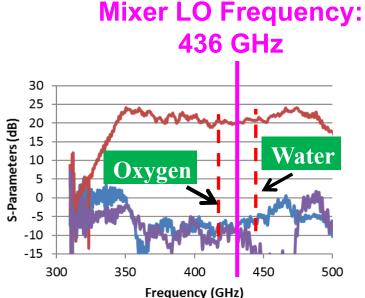

NGC:

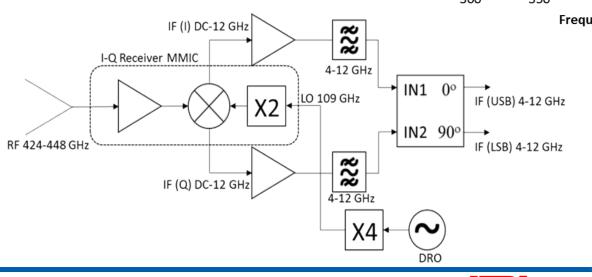
Bill Deal (PI) Kevin Leong (Co-I)

Caitlyn Cooke Aaron Swanson

Gerry Mei

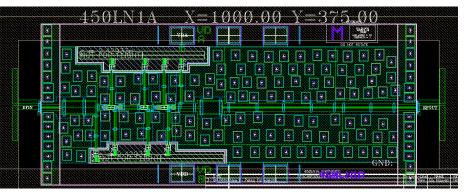
Demonstrated 1/f Noise Improvement on TWICE Receiver



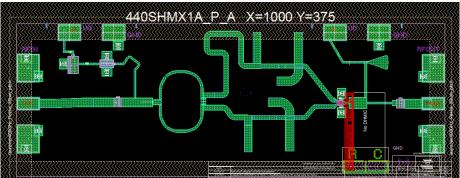


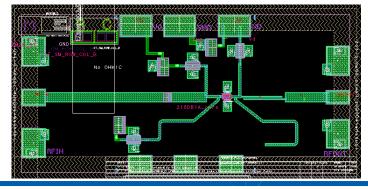
Integrated Receiver Technology Approach

- 424 GHz (Oxygen) and 448 GHz (Water Vapor) will be measured in single aperture and receiver
- IQ Mixer demonstrated on ACT-5
- 424 GHz will be measured at 90 degree port
- 448 GHz will be measured at 0 degree port



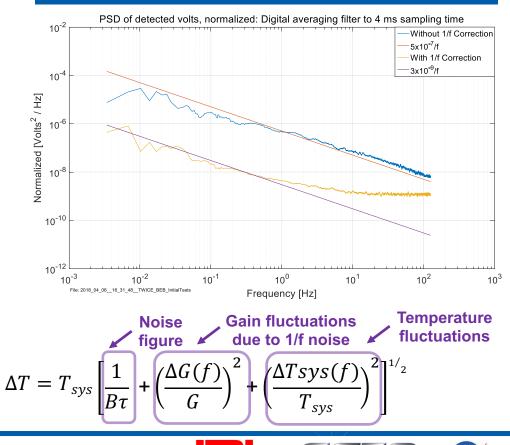
448 GHz Chipset




Low Noise Amplifier Specifications		
Bandwidth	420 – 450 GHz	
Gain	16 dB minimum	
Noise Figure	6 dB	
Chip Dimensions	375 um x 1000 um	

Second Harmonic Mixer Specifications		
Bandwidth	424 – 448 GHz	
Conversion Gain	-17 dB	
LO power	0 dBm	
Output Waveguide	WR-2.2	
Chip Dimensions	375 um x 1000 um	

Frequency Doubler Specifications		
Bandwidth	208 – 226 GHz	
Conversion Gain	-3 dB	
Output power @218 GHz	0 dBm	
Chip Width	375 um x 750 um	



Develop and validate novel techniques for the mitigation of 1/f noise in submm-wave direct detection receivers.

Approach:

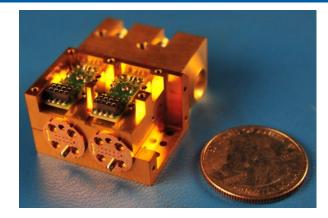
- Design first submillimeter wave Dicke switches monolithically integrated with LNAs
- 2. Development radiometer architectures integrating switches and LNAs to trade 1/f noise improvement vs. sensitivity improvement.
- 3. Validate radiometric performance with NEDT measurements

TWICE 670: 1/f Noise Corrected Data

Benefits of Direct Detection Receivers

Compact, less components

- 220 GHz: 1.8 x 3.0 x 6.4 cm housing
- 680 GHz: 0.8 x 1.3 x 4.8 cm housing


Good Sensitivity with LNA

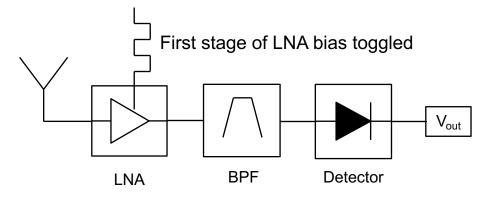
- 220 GHz 5.1 dB front end noise figure
- 680 GHz: 10.5 dB front end noise figure

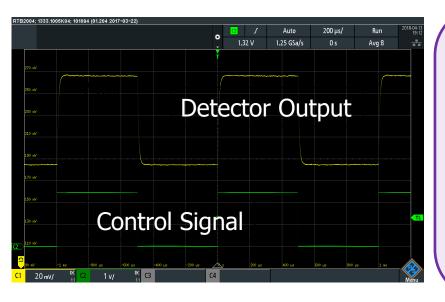
Low DC Power Consumption

- 220 GHz: 250 mW (500 mW polarimetric)
- 680 GHz: 210 mW (420 mW polarimetric)
- Compact, low power consumption makes them ideal for CubeSat applications, or large scale receiver arrays

SWIRP: 220 GHz Polarimeter

TWICE: 670 GHz Radiometer




Modulated First Stage Bias

1. Switched LNA bias

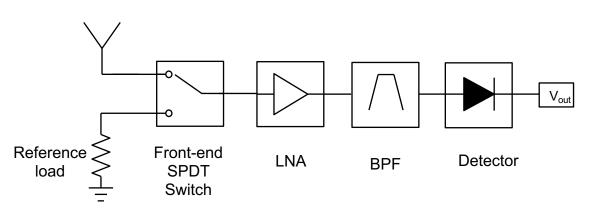
- Achieving output voltage signal modulation through toggling first stage transistor in LNA chain
- Comparing on and off state output voltage, instead of to a reference load
- Only viable at frequencies where single stage transistor gain is low
- Proven on TWICE

Pros:

- 1/f noise reduced
- Avoids noise figure degradation due to lack of front end switch or coupler losses
- No additional RF components, easily integrated into existing radiometer platforms

Cons:

- No reference load for gain calibration. (LNA impedance unknown when bias is toggled off)
- Additional 3 dB loss in receiver sensitivity due to switching



Dicke Switch Architecture

2. Front-end Dicke Switch

Switching configuration impact on noise figure

	180 GHz		230 GHz		670 GHz	
	Gain (dB)	NF (dB)	Gain (dB)	NF (dB)	Gain (dB)	NF (dB)
1. Baseline Amp Amp Det	36	4.0	34.8	4.9	28	10.2
2a. Dicke	31.8	8.3	29.7	10.0	20.5	17.7
2b. Dicke Sw+Amp Amp Amp Det	51.8	6.5	49.7	7.4	42	14.3
2c. Dicke Amp+Sw Amp Amp Det	51.8	4.1	49.7	4.9	42	10.4

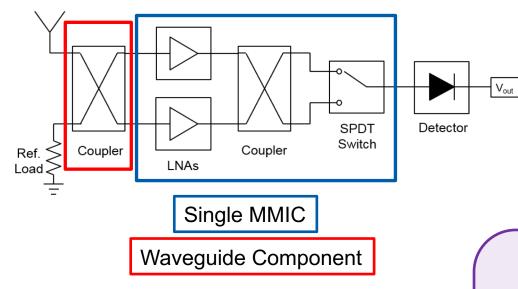
- SPDT switch in front to capture 1/f noise contributions from LNAs and detector
- Provides calibration via constant known reference load, close to antenna temperature
- Will account for noise in every component behind the reference load

Pros:

- Switching provides 1/f noise reduction
- Reference load provides gain calibration reference

Cons:

- Noise figure degradation due to front end switch losses
- Additional noise figure degradation due to interconnect losses before LNA



Pseudo-Dicke Architecture

NORTHROP GRUMMAN

3. Pseudo-Dicke Switching

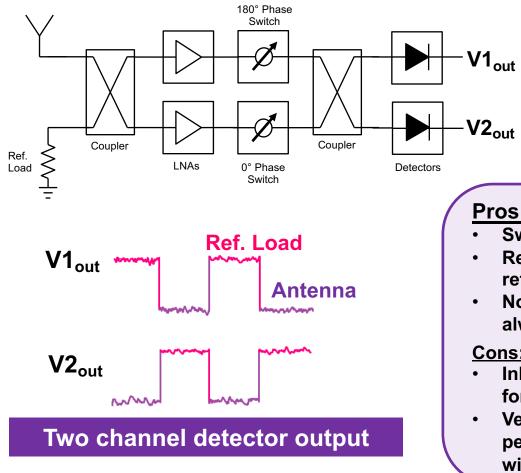
- Similar principle to Dicke switch architecture
- Switches between antenna and reference load
- Removes SPDT from front end for frequencies where switch loss will be high
- Coupler loss generally lower than switch loss (depending on frequency)

Pros:

- Switching provides 1/f noise reduction
- Reference load provides gain calibration reference
- Removes SPDT switch losses

<u>Cons:</u>

- Noise figure degradation due to front end coupler losses
- Additional noise figure degradation due to interconnect losses before LNA



Pseudo-Correlated Radiometer 4

- Concept: two identical radiometers, one looking at reference load, one at incoming signal
- Two radiometer paths 180 degrees out of phase, so receiver always sees incoming signal
- Implemented by use of a 180 degree phase switch on one path

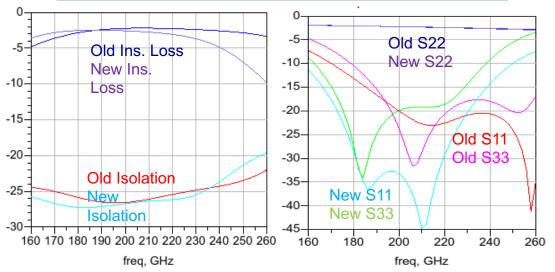
Pros:

- Switching provides 1/f noise reduction
- **Reference load provides gain calibration** reference
- No degradation in NEDT, since the receiver is always looking at the incoming signal

Cons:

- Inherent more complicated due to the need for two receivers
- Very important to have ideally equal performance from both receivers, otherwise will see a degradation in noise reduction

Packaging Plan – WR4.3 band

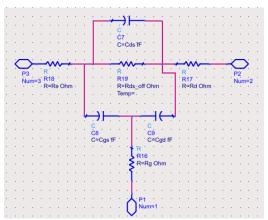

NORTHROP GRUMMAN

Earth Science Technology Office

1. Dicke Switch Test Module	Standard Dicke switch architecture	GOALS • Evaluate performance of SPDT switches • Evaluate switch radiometric performance • Baseline 1/f noise improvement due to
Coupler LNAS LNAS	Removes front end Dicke switch losses	switching <u>GOALS</u> • Single housing with waveguide coupler (no detector) • Evaluate receiver radiometric performance • Test 1/f noise improvement, compare to Dicke switch
3. Pseudo-correlator with Phase Switchin Vout Coupler Ref. Load LNAs NAs Nas Switch	Eliminates front end Dicke switch losses AND 3dB sensitivity hit due to switching	GOALS Outputs to two separate detector channels Evaluate receiver radiometric performance Test 1/f noise improvement, compare to Dicke switch
	13	ESTO NASA

Switch Model

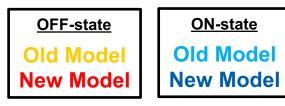
- 2-finger and 4-finger common source devices measured
- Intrinsic capacitances and resistances extracted as a function of bias
- Existing and new model will be used to validate switch model
- Common source and common gate devices will be designed for continued device modeling

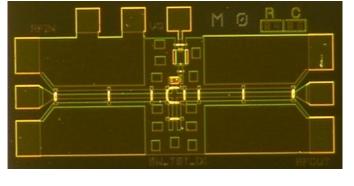

Intrinsic Parameter Effect on 230 GHz SPDT switch

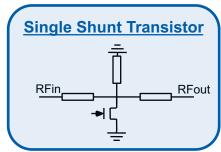
Extracted Intrinsic Switch Model Parameters

	New Model	Prior Model	% Change
Cgs_i off	3.7	19.3	-81%
Cgd_i off	4.7	3.9	22%
Cds_i off	10.4	5.8	80%
Rds_i off	30000 <mark>1</mark>	30000	0%
Cgs_i <mark>on</mark>	16.2	25.0	-35%
Cgd_i <mark>on</mark>	12.2	5.0	144%
Cds_i <mark>on</mark>	10.4 ²	7.5	39%
Rds_i <mark>on</mark>	11	11	0%

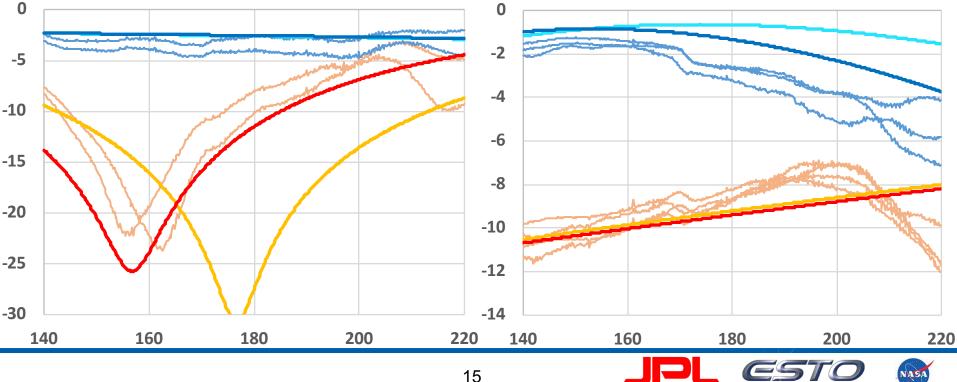
1. Extractions for off-state Rds not clean, using old model 2. Extractions for on-state Cds not clean, assuming no change from off-state


Simulated HEMT Switch Model

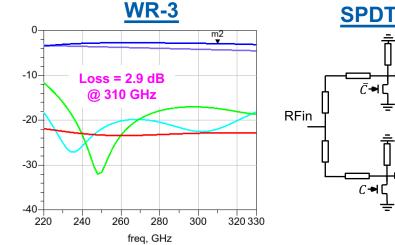

Test Switch Structures

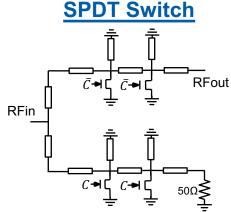


 Compare measurements to simulated data for switch model validation

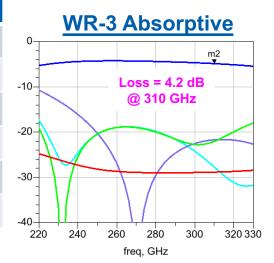


Return Losses- Modeled vs. Measured

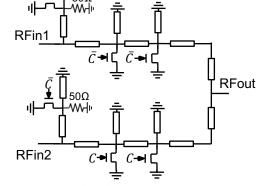

Insertion Loss & Isolation- Modeled vs. Measured



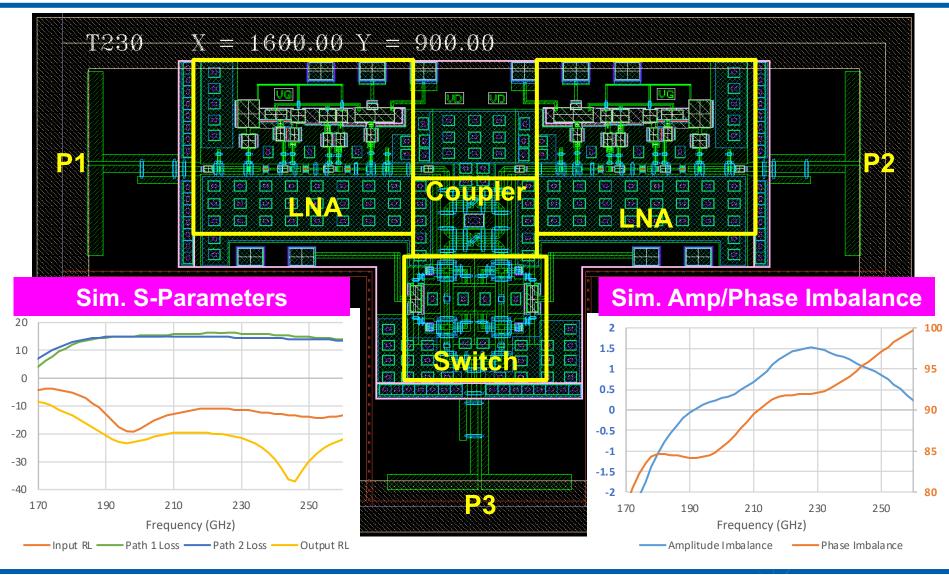
SPDT Dicke Switch Simulations



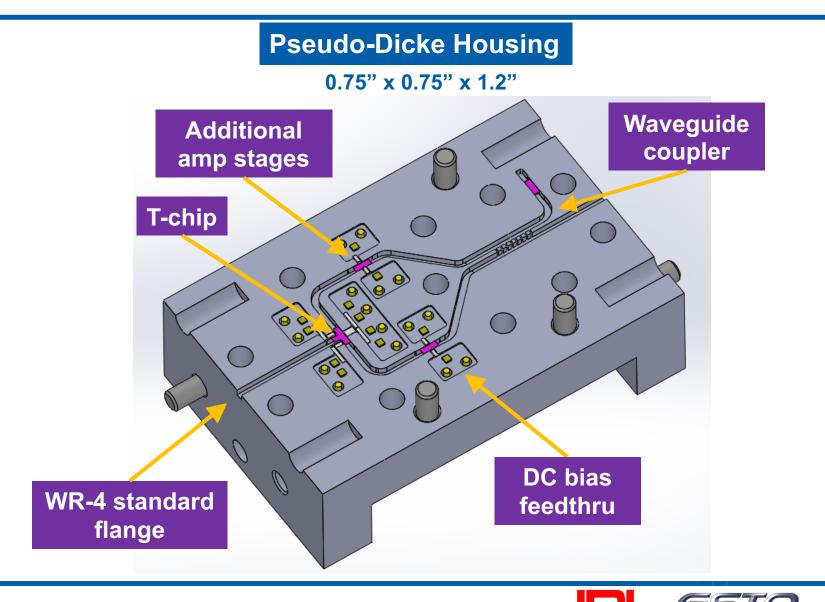
- SPDT switch designs for a range of bands
- Non-reflective switches designed for ٠ balanced amplifier module at 230 and 310 GHz
- One version on IRST1 for each the existing model and new model



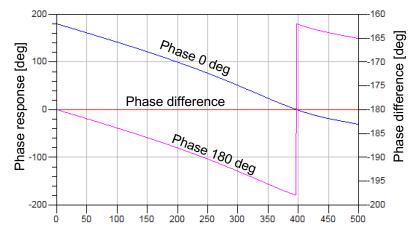
Loss	Isolation
2.2 dB @ 180 GHz	> 25 dB
2.7 dB @ 230 GHz	> 24 dB
3.8 dB @ 310 GHz	> 25 dB
2.9 dB @ 310 GHz	> 22 dB
4.2 dB @ 310 GHz	> 25 dB
4.2 dB @ 670 GHz	> 15 dB
	2.2 dB @ 180 GHz 2.7 dB @ 230 GHz 3.8 dB @ 310 GHz 2.9 dB @ 310 GHz 4.2 dB @ 310 GHz


Absorptive SPDT Switch 50Ω -WH+

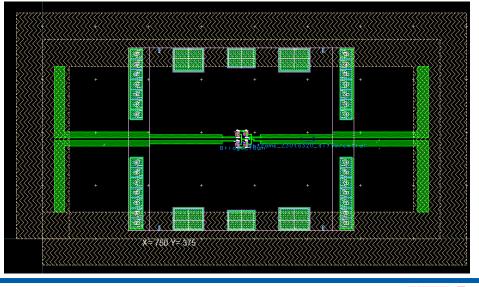
230 GHz Pseudo-Dicke "T-Chip"



230 GHz T-chip Packaging


Earth Science Technology Office

NORTHROP GRUMMAN


Simulated Specifications		
Bandwidth	230 – 320 GHz	
Loss	3.5 dB	
Phase error from 180°	+/- 1°	
Amplitude difference	< 1dB	
Chip Dim.	375 um	
Chip Length	750 um	

Simulated Performance (Ideal)

Frequency [GHz]

Layout

- IRaST is:
 - Developing an Integrated 424 448 GHz receiver
 - Developing new 1/f noise reduction techniques for direct detection receivers

Project Status:

- 1st Mask layout completed
- Wafers are in fabrication
- Test blocks have been designed
- Testing will begin August/September

