Advances in the CO₂ Sounder Lidar for measurements from Aircraft and in Scaling for Space

James B. Abshire¹, <u>Xiaoli Sun¹</u>, Anand Ramanathan^{1,2}, Haris Riris¹, Graham R. Allan^{1,3}, William E. Hasselbrack^{1,3}, Jianping Mao^{1,2}, Mark Stephen⁴

¹NASA Goddard, Sciences and Exploration Directorate, ²ESSIC, University of Maryland ³Sigma Space Inc. ⁴NASA Goddard, Lasers and Electro-Optics Branch

> Presentation to: 2017 NASA ESTF Conference

> > June 14, 2017

Support from: NASA ESTO IIP-10 & QRS programs ASCENDS Pre-formulation Activity, Goddard IRAD program

James.B.Abshire@nasa.gov

Atmospheric CO2 & Earth's Carbon Cycle

Challenges:

 Fluxes of great interest produce only very small signatures in atmospheric CO_2 (typ. < 1 of 400 ppm, or < 0.25%)

 Areas of interest are distributed globally (including high latitudes, often with haze or clouds

 Arctic and southern oceans are in darkness almost half of each year

Major Questions about CO2 Sinks: Is considerable uncertainty in locations, strengths, dynamics & evolution with time => Space Observations (OCO, ASCENDS)

ASCENDS Mission

Recommended by 2007 Earth Science Decadal Survey

Science Measurements:

Laser absorption by atmospheric column CO_2

- Polar orbit
- Nadir pointing
- Accurately measures absorption of a single CO₂ absorption line
- Continuous measurements of CO2 column absorption and range to surface

Minimum Requirements:

- Random measurement error:
 < 0.5 ppm with 10 sec integration over deserts
- Bias: <<0.5 ppm Primary causes
 - Measurement environment
 - Instrument artifacts

CO₂ Sounder Airborne Lidar in 2014 & 2016

Improvements for 2014 & 2016 ASCENDS flights:

- 1. Optimized wavelength sampling across CO2 absorption line from 15 to 30 laser wavelengths
- 2. Step-locked seed laser

3. HgCdTe APD detector in receiver

4. Analog waveform data recording

5. 10 Hz recording & retrieval resolution

6. Larger laser footprint (2016)

- Multiple wavelength samples across the CO₂ absorption line to reduce measurement bias
- Pulsed laser to give range resolved measurements
- Laser wavelengths locked to the CO₂ line center with given offsets
- Post flight XCO₂ retrievals based on atmosphere model, meteorological data, and least squares fit.

CO₂ Sounder uses a Pulsed Multi-wavelength Lidar Approach

Time-resolved backscatter measurements allow:

- Direct measurement of the path-length
- Detecting cloud & aerosol scattering
- Time gating around surface:
 - Eliminates atmospheric scattering
 - Reduced solar background noise

Multi-wavelength sampling of CO₂ absorption line:

- Allows correcting for uneven instrument spectral response
- Allows solving for Doppler shift and eliminates its effect in XCO₂ retrieval
- Allows correction for influences of water vapor on CO₂ line shape & in retrievals

Retrieval solves for XCO2 via a least square fit of the _ predicted CO2 line shape to the lidar measurements

Lidar Measurements over Tall forests in Coastal California (Redwood forests on several km high mountains)

- Why ?: Accurate CO₂ measurements over Amazon, Congo & Boreal forests are important for ASCENDS
- Varying tree canopy & terrain -> rapid change in column length
- Results show accurate (very low bias) measurements in challenging conditions

Accurate Lidar Measurements though aerosols over desert: (2014 SF-2 over Edwards AFB)

ASCENDS

Lidar Measurements over desert on February 10, 2016 Spiral over Edwards AFB CA

XCO₂ Retrieval for the CO2 Sounder Measurements

- Measurements & airborne lidar model agree well from 7 to 13 km altitude
- Error offset is likely due to slighter higher noise in detector amplifier
- For < 8 km altitudes, the errors increase, caused by:
 - Lower CO₂ absorption in shorter column
 - Smaller Laser footprint => more impact from surface reflectivity changes.

16

			10					
Airborne-borne CO ₂ Sounder Lidar Parameters					/	Madal		
Nominal laser pulse energy	25 μJ					Measurem	ients	
Laser pulse width and rate	1.0 µs at 9 kHz			/				
Orbit altitude	2-12 km		12					
Telescope diameter	20 cm			- / -				
Receiver optics transmission	73%	Ĵ Ĵ						
Receiver FOV	500 μrad	e (]	0					
Receiver optical bandwidth	1.4 nm FWHM	tud	8					
Off-line atmosphere transmission	80%	Alti						
Surface reflectance (off-line)	44% (desert)	1			•			
Receiver integration time	1 sec.		4					
Detector quantum efficiency including fill factor effect	$\eta_{APD} = 70\%$							
Detector gain and excess noise	$G_{APD} = 600,$							
	$F_{\text{excess}}=1.05$		0			4 5		
Detector dark current	5 fA		U	0.5	 	1.5	۲ ۲۰۰۰ ۲ (۱۰۰۰۰۰۰۰)	2
Receiver NEP	$0.56 \text{ fW/Hz}^{1/2}$			xC02 S	ta Dev in 1	-sec integr.	time (ppm)	

Scaling Lidar to Space: Approach & Model-Predicted Performance

- Laser transmitter emits 20W (2.7 mJ at 7.5 KHz)
 - Laser development on its way to TRL-6
- 1.5 diameter telescope, similar to ADM
- HgCdTe APD Detector, near TRL 6 now
- Space lidar size similar to ADM, but simpler & less. power (~600 W)

GSFC

Laser Pathway to Space*

(Ongoing ESTO QRS Development– TRL 6 by Dec 2017)

New Technology Developments

2017 ESTF Conference , Paper A5P5

Pump Laser for 2 stages of Power amp

OFS Fiber Amp Seeded with +Exp Pulse Raman Pump @ 7.2 A

*ESTF 2017, Paper A5P2 13

A key to CO2 Sounder Lidar performance: 4x4 HgCdTe APD Array Detector*

*- Developed under ESTO- IIP10

Closed-cycle cryocooler used for lab tests and aircraft

Packaged detector system for airborne lidar

Lab Tests show the 4x4 HgCdTe APD Detector is nearly ideal for IPDA lidar

2017 ESTF Conference, Paper A5P5

HgCdTe APD Detector in Mini Cryo-Cooler Developed for Space

- Funded by ESTO InVEST and QRS program for a similar (2x8) HgCdTe detector
- Miniature Stirling cryo-cooler from DRS with multi-year life time (Rawlings, SPIE 9070, 2014)
- Detector operating temperature 80 K or 110 K
- Mass: ~1 kg,
- Electrical power: 6-8 W with heat sink at 30°C
- Vibration & thermal cycle tests per NASA GEVS specification
- Thermal vacuum and proton radiation tests in Summer 2017.

Chip carrier for the 4x4 HgCdTe APD in same cooler (ESTO-QRS 2015)

Summary

10s ave

-1s ave

Step-Locked

4 m spot

Year

laser, Improved Optics,

Pulsed multi-wavelength CO₂ Sounder lidar provides a robust measurement of XCO₂

- Steadily improved airborne performance since 2011
- Technologies developed for major components, now at or near TRL-6
- Developed an instrument model and XCO₂ retrieval algorithm and verified them with airborne data
- Model scaled to space shows lidar has $\frac{1}{4}$ random error required by ASCENDS
 - Allow 10x higher spatial resolution or a smaller instrument size

We acknowledge the outstanding work of our team and appreciate the support from ESTO

