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Temporal Experiment for Storms 
and Tropical Systems (TEMPEST) 

•  TEMPEST proposed to NASA Earth Venture Instrument-2 in Nov. 2013  
•  Low-risk, high-margin approach to use 6U-Class satellites for repeat-pass 

millimeter-wave radiometry  
•  First global temporally-resolved observations of cloud and precipitation 

processes to improve weather and climate models 
•  Selected by Earth Venture for in-space technology demonstration 

managed by NASA Earth Science Technology Office (ESTO).    
 •  TEMPEST-D project started in Aug. 2015, 

with a 2-year development cycle.  
•  Deliver one complete flight system 

with integrated payload for launch 
integration in early autumn of 2017. 

•  Manifested by NASA CSLI for launch on 
ELaNa XXIII in Q2 of CY2018. 
•  Commercial resupply service to ISS 

for deployment by NanoRacks 
several months after launch. 
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•  Infrared brightness temperatures (middle row, available from GEO) 
show cloud top temperatures, locations and morphology. 

•  Onset of precipitation clearly detected at millimeter-wave frequencies 
on TEMPEST constellation, including 165 GHz (bottom row). 

•  TEMPEST minimum spatial resolution of 25 km is shown (circles). 

Infrared 
Brightness 

Temperature 

Millimeter-wave 
Brightness 

Temperature, 
both from model 

Temporal 
evolution of 
convective 

system 

Observations of Transition from 
Clouds to Precipitation 



Reising et al., A1P4                  ESTF 2017, Caltech, Pasadena, CA             June 13, 2017           4 
 

Temporal Development of Ice  
in Cloud-Scale Models 

•  Modeled brightness temperatures at the 
five TEMPEST frequencies with 25-km 
spatial resolution 

•  Simulations compare different rates of 
supercooled water droplets collecting on 
ice crystals (riming efficiency). 

•  Rate varies from baseline (black) to 
twice (red) and half (blue). 

•  Measurable difference between curves is 
4 K or greater in 5 minutes at onset of 
ice formation. Instrument precision 
requirement is 1 K in 5 minutes. 

•  Ice remaining in clouds after 
precipitation has substantial effects on 
climate.  Residual ice can be compared 
to W-band radar observations from 
CloudSat or ESA’s EarthCARE. 
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Global Time-Resolved Observations 
of Clouds and Precipitation 

•  During a future one-year mission, 
TEMPEST constellation could 
make more than 3,000,000 time-
resolved observations of 
precipitation (> 1 mm/hr), including 
100,000+ deep-convection events 

•  Could perform more than 50,000 
precipitation observations 
coincident (within 30 minutes) with 
NASA’s Global Precipitation 
Mission (GPM)  

•  Assumes nominal TEMPEST orbit 
for deployment from ISS at 400-km 
altitude and 51.6° inclination.  

•  Precipitation estimates from 
AMSR-E satellite radiometer data 
with oceanic observations only. 
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TEMPEST-D Demonstration: 
Motivation and Objectives 

•  Demonstrate capability of 6U-Class satellites to contribute to NASA Earth 
Science measurements in a 90-day technology demonstration mission 

•  Reduce risk, cost and development time for small satellite constellations for 
Earth Science measurements 

•  Raise the TRL of the TEMPEST mm-wave radiometer instrument from 6 to 
9 (scanning reflector to 7) 

•  Provides the first in-space demonstration of a millimeter-wave radiometer 
based on an InP HEMT low-noise amplifier front-end (LNA) for Earth 
Science measurements. 

Success Criteria: 
•  Demonstrate feasibility of differential drag maneuvers to achieve required 

time separation of 6U-Class satellites in same orbital plane 

•  Demonstrate cross-calibration between TEMPEST mm-wave radiometers 
and NASA/JAXA Global Precipitation Mission Microwave Imager and MHS 
on two NOAA satellites and two ESA/EUMETSAT satellites with 2 K 
precision and 4 K accuracy. 
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TEMPEST-D 6U-Class BCT 
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TEMPEST-D Millimeter-Wave 
Radiometer for 6U-Class Satellite 
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Parameter  Specification 
System 

noise temp. 
< 600 K for 89, 165 & 176 GHz  
< 750 K for 180 and 182 GHz 

Number of 
channels 5 

Bandwidth 4 GHz at 89 and 165 GHz  
2 GHz at 176, 180 & 182 GHz 

Min. spatial 
resolution 

13 km at  
182 GHz 

25 km at  
89 GHz 

Min. beam 
efficiency  > 90% > 90% 
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TEMPEST-D Instrument: 
Radiometer Calibration 

•  Five-frequency millimeter-wave radiometer measures Earth scene over 
±45° nadir angles, providing an 825-km swath width from a nominal orbit 
altitude of 400 km.  Each pixel is sampled for 5 ms. 

•  Space view observes cosmic microwave background at 2.73 K (“cold sky”). 
Ambient Blackbody calibration target is measured each revolution to 
perform two-point external calibration every 2 sec. (scanning at 30 RPM).  
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Center Frequency 
Requirement (GHz)  

Center Frequency 
Measurement (GHz)  

Noise Bandwidth 
Requirement (GHz)  

Noise Bandwidth 
Measurement (GHz)  

165 ± 2 163.9 3 ± 1 4.071 

176 ± 2 175.2 2 ± 0.5 1.901 

180 ± 2 178.3 2 ± 0.5 1.986 

182 ± 2 181.1 2 ± 0.5 1.908 

Frequency Response of Flight Model 
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End-to-End Testing of Flight Model 
Radiometer Receivers 

  

Receiver noise temperatures were 
measured using ambient load and LN2 
(Y-factor method) with a standard-gain 
horn.  All receiver noise temperatures 
meet requirements with large margins. 
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89 812 420 

165 1340 416 
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181 1110 690 
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Flight Model Radiometer Instrument 
Bench-top Integration at JPL 
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Vibration Testing of Flight Model 
Radiometer Instrument at JPL 

TEMPEST-D flight model (FM1) tested to GEVS levels at JPL last week. 
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Summary 
•  TEMPEST-D mission to demonstrate capability of 6U-Class satellites to 

perform global observations of clouds and precipitation processes 
•  Reduces risk, cost and development time for repeat-pass radiometry to 

measure temporal signatures of precipitation using small satellite 
constellations 

•  Provides first in-space technology demonstration of a millimeter-wave 
radiometer based on an InP HEMT low-noise amplifier front-end for Earth 
Science measurements 

•  Raises the TRL of the TEMPEST mm-wave radiometer instrument from        
6 to 9 (scanning reflector to 7) 

•  Demonstrates the feasibility of differential drag maneuvers to achieve 
required time separation of 6U-Class satellites in the same orbital plane 

•  Demonstrates cross-calibration of TEMPEST radiometers with NASA/JAXA 
GPM Microwave Imager and MHS with 2 K precision and 4 K accuracy 

•  Features rapid development cycle of two years from project start to delivery 
for NanoRacks integration in autumn 2017 and launch to ISS in Q2/CY2018. 


