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@ PCAES Overview W

« ESTO/ AIST funded with start on May 1 2015 and completion on
April 30 2017. Extended to May 31 2017.

« Startat TRL 2, end at TRL 4.

« Demonstrate through simulation and hardware validation that the
MPC architecture, borrowed from control theory, can optimize
adaptive lidar for remote sensing data collection.

« The software product, using a data driven control and prediction
approach, will provide autonomous, rapid and adaptive data
collection by creating a science optimized, time-evolving power map.

« Software approach relies on Matlab environment and associated
toolboxes, and furthermore leverages community developed software
for certain targeted applications.

 Year 1 - Requirements, modeling & simulation and optimization
development.

* Year 2 — Hardware implementation and model validation.
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Significance of PCAES Work to Future Earth %
Science Missions ‘%

 Tightening NASA budgets require new missions to:
(1) Address the issue of data collection efficiency

(2) Consider smaller payloads which can still provide high
guality science.

« PCAES project is developing an on-board autonomous
software architecture that addresses both these areas.

« Sensor platforms can collect much more data of
Importance for Earth science by optimally targeting areas
of interest.

« The PCAES MPC architecture is based on successful
ground-based control of complex, hierarchical and
sometimes distributed subsystems which can be used for
other type of complex space missions.

 We chose a target application to adaptive multi-beam lidar.

GSTO
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The Real World is a Rich Environment,
Fraught with Complexity [Desnoyer2015] l@

« Even in the simplest case, an algorithm must operate on all of the pixels
in an image, while the trend in vision is to increase the computational
complexity further.

» Processing time of algorithms proposed for the well-studied problem of
object detection (see below)

« Scene understanding, pose estimation and others, newer techniques
rely on modeling the relationships between portions of images and
objects, adding extra dimensions to the search space.

100 Hashing

10
HOG

Rotated Viola jones

Processing Time/ Image (s)

Desnoyer, Mark, "Visual Utility : A Framework for Focusing Year
Computer Vision Algorithms", PHD thesis, CMU, Dec. 2015.
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@/ Why Use Model Predictive Control %
Architecture? ‘%

« By starting with MPC architecture, we can use a top-down
approach. Therefore we can borrow from the large-scale
development of other autonomous systems (cars, etc.).

 MPC automatically handles constraints and re-optimizes
control at each time step.

« PCAES is a new development for space applications
which will enable new types of sensor platforms and can
take advantage of recent developments in sparse signal
processing, compressed sensing and deep learning
algorithms.

« MPC architecture ban be basis for formation flying
CubeSats/ Smallsats and other complex space-based
mission.

Ball Aerospace & Technologies Corp. 5



One Application - Multi-Beam Adaptive Lidar -

2

ESFL
We apply MPC
architecture to an Pulsed Beam
. Laser expander
electronically =
steerable flash .
. ousto-
lidar (ESFL) optical 256x256R
RF modulator(s) oIC

AO M_ controls driver detector
amplitude and

MPC-Based mum .
angle (frequency) Beam
of each beamlet o L T
. -100’s o !
independently. controllable
2D multi-beam l pulsed beams
steering I ol
Constraints: Lidar & Vis/ |- JledP
— Total power NIRcameras e Sooime | roes Choe | s [Ren
— SNR

— Steering angle
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Lidar return data
sparse — typically 1%
of pixels. Need
estimated return lidar
power in all 256x256

piX6|S of ROIC Velocity Vector «— |
receiver. /
. *Need estimated
L|ght flux measured Camera with Multi- return lidar powerin
by the lidar and : f_l_ look-ahead beam, all 256x256 pixels
. Lo pulsed , : .
camera is made up of Multi- visible and lidar with 5 — Direct
nearIR bands -1 ROIC- component
two ComponentS — band aligned with based 2D sparse (red dots)
direct component fdarh - Ay sensor /
amera .
(non-scattered) and view coz;fzsznt
diffuse component =4
(Scatte red) . / \TP\;%S Solar zenith
Due to solar zenith ’;,;.T ¥ angle (524 - The
angle, light seen by ; it 2 s angle (VZA)~0
camera not same as ﬁ@:%ﬁgz Forest |8ce | sy [ocsen
lidar return signal.
Lidar return at hotspot
(typically 3° FWHM)
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Multi-Spectral Camera Receives Different
Flux Than What Lidar Sensor Sees

2

« The difference between the camera measured signal and the lidar
return can be significant and gets worse as the solar zenith angle

Increases.

« Below is shown mean reflectance — every ground pixel will have

variability.

Normalized lidar return

_ : : Camera measured signal (sun
signal with noise bars

Calculation results for extent: -110, 38 -105, 42

BRDF Transect Plane - land Download Data Debug Log

0_‘BRDF Graph - land pixels (2000), Extent: -110.0,38.0 -105.0,42.0

AM

@ 45 deg) with noise bars

Calculation results for extent: -110, 38 -105, 42

BRDF Transect Plane - land Download Data Debug Log
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UEFRDF Graph - land pixels (2000), Extent: -110.0,38.0 -105.0,42.0
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Ball Developed Lidar Radiometric Math Model Used
for Mission Level Definition and Requirements

Parameter Value Units Comments

Orbit altitude 440 km

Spot size per beam 30 m Landsat size —
application driven

Across-track swath width 7.68/ 1.0 Km/ deg (instrument

FOV)

Solar background 0.0309 W/m? sr nm

Backgroundnoise, Detector noise |1, 8 Photons/time bin/pixel

Laser pulse energy/ Average power | 1004}/ 30 mJ/ W Fibertek SQ laser — 1064
nm, eye-safe concern 1
beam

Maximum®* SNR groundreturn [1 | [243 66 SNR Maximum SNR of

beam, 10 beams, 100 beams] 15.7] waveformreturn. 1 heam
case not deflected.

Maximum®* SNR foliagereturn [1 | [96 25 3.3] | SNR Maximum SNR of

beam, 10 beams, 100 beams] waveformreturn. 1 beam
case not deflected.

Number pixels per footprint 1 - Max SNR but poor
resolution

iIFOV 68 urad

Detector size 256x 256 -

Receiver telescope diameter 1 m CALIPSO telescope
design

Number of pixels across per 2560 -

degree FOV

Range bins 61

Resolution of lidar range 0.7 m

Ball Aerospace & Technologies Corp.
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Lidar Return SNR Depends Upon Surface
and # of Beams

2

« Example output from Lidar
Radiometric Model — ground and
nominal foliage return signal.

 Radiometric calculations for 1064
nm, but Landsat/ MODIS data
used in PCAES modeling is 850

nm band.
SNR of lidar return signal
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60 \— % 10 lidar beams ||
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=L .{?‘ T foliage ™ T 7
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Figure 10. Spectral reflectance curves for the following paired landcover types (Aronoff, 2005):
e Clouds vs. Snow & ice
e Dry soil vs. Wet soil

e Broadleaf vegetation vs. Needle leaf vegetation
e Turbid water vs. Clear water
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WHAT IS MPC TECHNOLOGY
& WHY A DATA DRIVEN
APPROACH FOR PCAES
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@/ Heuristic Explanation of MPC W

* Works very much how one drives a car.

— Continuous adjustment/ optimization of
steering and speed using visual feedback In fact — many approaches
of the operating environment while having t0 autonoIMouUS Cars Use a
an embedded model of car operating version of MPC
parameters ( acceleration, turning
sensitivity, braking) and considering

GPS/INS Radar Lidar Camera Map

constraints (lanes, other cars, max I ] I I I
braking and acceleration). Predict ahead. el i
— Multi-layered (the person with smart Planning and Control
phone providing directions) Lt e | [ Bt
MPC-based Controller
European Journal of Control 24 (2015) 14-32 [tsees o]
- S " 7

Contents lists available at ScienceDirect

European
Jo

,,,,, L Low-level Actuation

of Control

European Journal of Control Steering Interface Acceleration Interface

journal homepage: www.elsevier.com/locate/ejcon

Automated driving: The role of forecasts and uncertainty—A
control perspective

Ashwin Carvalho ¥, Stéphanie Lefévre, Georg Schildbach, Jason Kong, Francesco Borrelli Fig. 1. Intelligent vehicle system overview.

Department of Mechanical Engineering, University of California Berkeley, USA ’
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What Does Simplified MPC Architecture Look

Like?

2

Two things are
controlled —
lidar power to
ground pixels
and dynamic

Supervisory control
*Operating mode
*Co-registration
*Orbit and geolocation
*Ground and spacecraft|/F

*Max information -
salient regions
*Forrest canopy
*Target revisit, etc
*Follow ground feature

Y

Coroistrflints, (river, etc)
range gate. \?vtzleg‘:t':es
. Commanded
Estimator
] ower to ground
predicts return T Optimizer 17 pixels
Min(cost function)
power to ROIC Subject to C y<d, n Fé=n Return power,
receiver. @l & Distance
\ 4 -
Supervisory Commands | controller | Plant Outputs
control passes 1 = L '
] Scene
down weights. BaslcMPC Scene
Optimizer components classifier
a.I g 0] rlth m Estimated predictor/ L Sensor & signal
requires scene power to each |l processing |
classification. pixe \\//
e =S 1)
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Unusual Characteristics of Our “Plant” Leads %,
to Data Driven Approach ‘%

 We have to go to a data-driven

control (DDC) approach because Controlled Objects Control Methodologies
there iS no Conceivable C]‘Accuralies?\ifﬂjlgzll?ical mode! < Using MBC design methods
mathematical model for the time- e A
varying scene ... well kind of true. uncertainties < " control, ete.

- Data driven approach uses the comphcted withtoo g oreror |~ |____ U DD mthods
lidar return data as the model. e ———
We take it one step further by < |
doing scene classification Fig. . Contolled objcts of DDC.

(system ID) — reduces model
from 256x256 to perhaps 10-20
regions in the FOV.

 Our “actuators” are the lidar
beamlets and the sun (dayt|me Z.-S. Hou, “From model-based control to data-driven control:
Operation). We Only Contr0| one Survey, classification and perspective”, Inf. Sci., 235 (2013) 3-35.
and it only collects sparse returns
over FOV (1% type numbers).

ESFL MPC in this
category

Ball Aerospace & Technologies Corp. 14
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Computational Speed Problem - Time Evolution of W
Power Map from Landscape and Clouds

 The example images are 10x10 —how power map changes as we
go though a cloudy area. Simple weighting — clouds very

penalized, water least penalized. Prior data collection not
included.

 PCAES focuses on fastest, lower level computation.

Ground track and moving ~_ |stantaneous Power map hefore

FOR over Panama canal field-of-regard thresholding
(FOR) of adaptive
lidar A

Ball Aerospace & Technologies Corp. 15

€arth Séience’ Technology Office



e

Including Heritage Databases into
Estimator — On-Board Memory

2

Approximate on-board memory
requirements (global land
coverage — no compression) —
100 m/ 30 m pixels
— BRDF heritage —90 GB/ 1.0 TB
— DEM heritage — 75 GB/ 0.85 TB

— Scene classification heritage -
22 GB/0.25TB

— Total ~190 GB/ ~2.1 TB
Memory capabilities should be
around 0.4 TB for 6U cubesats

and 4 TB for full size spacecraft
by 2020.

|ICESat-2 plans to carry multiple
databases including global DEM.
— 30 m to 1 km ground pixel size.

=

With data compression large AIRBUS
on-board heritage databases 2.5TB
are feasible drive
SWR (6U)

Viking
orbiter

Mars
global
surveyor
\ emory growth for on-board coimputin
10 T T T T T T T T

ine throu@gh data----

........................................................

Shuttle

[ S ———

On-board memory (MB)

-2 H H

10 | | | | | | | |

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

See
for years 1975 - 2011.
See SWRI and AIRBUS sites for 2015-2016 data.

Ball Aerospace & Technologies Corp.
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http://www.cpushack.com/space-craft-cpu.html
http://www.cpushack.com/space-craft-cpu.html
http://www.cpushack.com/space-craft-cpu.html
http://www.cpushack.com/space-craft-cpu.html
http://www.cpushack.com/space-craft-cpu.html

SCENE GENERATION
- MODEL AND LAB TESTING
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Abundance of Real Satellite Scenery Provided %
Best Path Forward (1/2) ‘%

« MODIS data products:

— Global BRDF and scene classification — 6.5
km pixels

« Matlab SW extracts test strips and can pull
7 spectral bands

» IGBP classification — 17 categories and we [ g

Barr
Sn
Cro)
Ur
Croj
We
Gr.
Sa
Wor

add in clouds.
— US data base at 500 m and 1000 m pixels.

— Downloaded from Earth Explorer. W W 0 0% o T

Longitude (deg)
* Level 2 and 3 data — clouds removed and
atmospheric corrected BRDF.

— Also pulled in level 1b data that was not
processed for clouds & aerosols.

« [andsat data base:

O=Z00
2EXe2®

— 30 m pixel size data matches camera £ 8 ﬁi
I z: @38 | (%) T f Ol TiRs
pixels 1w
: H T W s s
— Variable amount of clouds. % | — L 17emm
0_“” 900 1400 1900 2400 \/\ 10000
— Multiple spectral bands useful for “ Wavelength (v
classification ._,3’_ ‘Er

Ball Aerospace & Technologies Corp. 18
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Abundance of Real Satellite Scenery Provided 7
Best Path Forward (2/2) \%

« ADAM (A surface reflectance Database for ESA’s earth
observation Missions)
— Provided reflectance (BRDF) data for global area but with 11 km pixels.
— Generated variance and BRDF shape information
— Allowed us to look at reflectance and sensitivity effects

; Eé"edd ; Calculation results for extent: -110, 38 -105, 42
. > an
Perform Calculation [ Download Spectrum Graph - land Download Data Debug Log
f .
EEEEEEEEEEEEEEE = ectrum Graph - land pixels (2000), Extent: -110.0,38.0 -105.0,42.0
7l p! P!
— mean|| ADAM
L Min:
nnnnn — min Reflectance Database
: 0.6
Long Max: -105 max Month: Jul
stdev || Lats
38.050:41.950
ratio 05 ns
eratio Graph: Spectrum -109.950:-105.05
Tume! andsat v 04 \Séi ([]3]
nth: I = phi- 10.1
il
lum. Zenith Angk F
=
View Zenith Angle: 0 @ 03

0.2

01

|

0.0 ==

500 1000 1500 2000 2500 3000 3500 4000
wavelength (nm]}

— Data is not always compatible — different projections, pixel scales unlts

file types, etc. S\
‘-'s STO

€arth/Science Technology Office
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OPTIMIZATION & SCENE
CLASSIFICATION
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Overview Of Optimization & Classification lﬁ%

* Inputs:
— Objective function : :
_ Estimated Multi-band
+ Weights Power Map Image

« Science objectives
— Cloud map (by pixel)
— Desired pointing locations for each —

science objective Power
Constraint Land Cloud ID
— Map of where data has been Classification [| Algorithm

collected already Existing
) ] Database
— Map of estimated power required
for each pixel Science
} Database
— Constraints
. Science
* OUtpUtS' Objectives /
— Power map (by pixel) for next Weights
frame
— Range gates Send Beam Angles & Power To

AOBD Controller

Ball Aerospace & Technologies Corp. 21
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@/ Scene Classification Overview W

* Primary objective is to avoid clouds
— Earth is 65% covered with clouds, so avoiding clouds is the
biggest gain to be realized
« Secondary objective to identify difference in land type
SO science can be prioritized

« Attempt to limit the number of bands needed to avoid
expensive instruments for the look-ahead camera

— Current work uses 6 bands from Landsat-8
* Green and SWIRL1 for snow index
» Blue and cirrus for cloud-vegetation differentiation
* Red and NIR for vegetation index
— Can be implemented with less precise instrument for rapid
on-orbit classification

22
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Cloud ldentification

» Clouds are difficult to separate
from snow and ice
— Uses NDSI (snow index)
* Green & SWIR1 bands*

— Uses blue and cirrus bands

* Ratio separates clouds from
vegetation easily

« Upper images are a cloud bank
over Colorado with snow on the
mountains

— Only small bits of snow are
labeled as cloud

« Lower image is a mix of high
and low altitude clouds over
Colorado (no snow)

— High altitude clouds are frozen,
so look like snow if the correct
bands are not available

— Misses at transition from ice
clouds to vapor clouds and in
wispy icy clouds

*Thompson, R., R. O. Green, D. Keymeulen, S. K. Lundeen, Y. Mouradi, D. C.
Nunes, R. Castafio, and S. A. Chien "Rapid Spectral Cloud Screening Onboard
Aircraft and Spacecraft”, IEEE Trans. GRS, 52(11), Nov. 2014., 6779-6792.

Ball Aerospace & Technologies Corp. 23 €arthy/Sdiencd Technology Office




Vegetation Classification - NDVI W

Early work used NDVI thresholds to
determine the terrain type More actively
— Works, but is a bit crude growing vegetation
) . . Simple NDVI Threshold Classification
* Requires tuning by region ? R T T
— Can't differentiate between scrubland 200
and sparse forest 400

— Different input images show that 600
NDVI is more related to rain and
subsequent growth rate

— Computationally fast, and only
requires two bands

6

800 frat ey
1000 [

1200

« Band 4 — Red 1400 25
* Band5-NIR 1600 ”
NDVI = (NIR-red)/(NIR+red) 1800 5
— Data input in raw DN for my tests to  20% 1
simulate the raw data that would be Less actively growing
available for on-orbit processing vegetation, water, and
Many papers show improved concrete/asphalt

methods, but rarely produce
significantly better results

Ball Aerospace & Technologies Corp. 24
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LIDAR RETURN POWER
ESTIMATION

Ball Aerospace & Technologies Corp. 25



Scene
classification
Scale mis)=0

500 m heritage
— I data

o m
o

Scale m(s)=1
NIIZ)V! Scene Lidar sample MRT Scalemisi?
SIRIEIED & classification of each class Estimated lidar
Direct -
—— Pixelated ||| Kernel-based SZA »  Datafusion return power
i i i * (MRT, EOF, etc) (TOA) in
—— Scene correction to pixels 256x256 array
indirect  Camera | Transfer to The kernel used is the Ross-Thick Li-Sparse-
Database (f) nadir SZA=0

Reciprocal model used on MODIS data.

| ID | Description | Attributes | Issues

Heritage derived kernel

power to SZA=0. Uses
data fusion from

classification, lidar
sampling of each IGBP
class in the current lidar
FOV, heritage data,
transformed camera data
to arrive at optimal
estimate of lidar return
power for entire array.

coeff. to transform camera

Algorithms combine multiple data
sources to arrive at a optimal
power estimate for all pixels. Can
provide feedback to correct scene
classification if it appears
misclassified. Has been
demonstrated in multiple papers
to provide better estimate of
albedo (MRT approach). Multiple
approaches available to fusion
data of different resolutions and
noise properties.

Large computational framework needs to
be studied to see if it fits within FPGA
computational speed. Requires additional
global on-board heritage data bases.
Kernel equation only valid where clouds
non-existent and may be limited unless
aerosol effects can be added back in using
camera data. Need to understand if
limitations at large SZA. MRT more
efficient than most other data fusion
approaches. Kernel can include hotspot.



Computing Predicted Power Output Using W
BRDF — Kernel Based Approach (3)

« The equation below computes the BRF from three terms: we have assumed kernel
functions are constant
R(6,9,0,A)=T,

(A) where (scalars) over small FOV.
Kol Kgeor @and K, q arethe scatterit . terms are the coefficients.

« The kernel functions can be pre-co uted knowingtqe solar zenith angle, the

MNE

M

£l

007
! 006

405

F -o.os
b o2
— 40 40 =
® E; ) ¥ FHoos %
3 — 5 3 * <
2 F 015 = ey K = g €o
3 3 E vol E
E g g 5
S 205 ~ 395 E H0.1 g F 4003
F o1
002
005
005
001
~108 -107.8-107.6-107.4-107.2 108 207'8'.10;6';07'44072 108 -107.8-107.6-107.4-107.2 0 ~ -108 -107.8-107.6-107.4-107.2 0
Longitude (deg) ongltude (deg) Longitude (deg) Longitude (deg)
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FPGA IMPLEMENTATION
MIKE ADKINS
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Processing Hardware Architecture

2

Hardware Architecture

Memory Technologies
Acquisition & Processing Board(s) Bulk Memory Fast 4
ast
Board(s) D(I;:;AGM
Cameras == FPGA) [DPsrRAM] Kb——1) DFE)AR“f
NAND
AN Flash A
Slow Flash
Small Lar e>
DDR-3 RAM 2
AN
Processing Technologies
Fast 4
A V4 A V4 FPGA
Microprocessor Cache ,
Microprocessor
Slow
>
Simple, Complex,
Static, Dynamic,
DDR-3 RAM Pargllel Sequgntial
Single-Board Computer Algorithms Algorithms
29 /1NN N

Ball Aerospace & Technologies Corp.
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@/ Assessing Algorithms for Computational W

Requirements

- Assess algorithms relative to:

— FPGA hardware resources (DSP slices, LUT-FF Pairs, DPSRAM)
= Notionally Xilinx Virtex-5QV
— Memory interface throughput

— Processing time
= Nominal goal - 30 Hz update rate (33 ms)

— Not considering microprocessor (yet)

- We assumed the simplest algorithms that still provide value. Future work
would increase sophistication and resolution of these algorithms.

Pairs Transfer Time [ms] [Transfer Time [ms ms
4% 0% 0.0 MNSA 2.1

lassification 9%

)ptimizer 0% small 0% 3.1 MN/A 3.1

DEM Data Handling TBD TBD TBD TBD TBD TBD

Power Approach 1 [EEES Small 0% 0.4 0.5
stimation/ Wpproach 2 1% Small 0% 0.4 MNIA 1.1
1.2 1.1

Prediction 2% small 0%

Powermap Conversion TBD TBD TBD TBD TBD TBD**

Ball Aerospace & Technologies Corp. 30
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LAB IMPLEMENTATION - HW
AND SW
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Lab Demonstration Captures Key SW W
Functionality — with Some Limitations

Compare with features of “real” system:

= Embedded controller directs beam deflections in real time
= Demo implemented on lab PC - envisioned FPGA , hybrid computing platform not practical here
= No synchronization involved due to low-power CW laser used

PCAES algorithms determine number, angles of beams and intensity.
= First two are verified but extensive processing would be required to mimic beam intensities accurately using
lab SLM
Multi-band camera is key input for multispectral scene classification
= Feedback from any type of imaging camera impractical with a lab setup:
— Only have visible “band” in scene on screen created by RGB projector
—  Wavelength of CW test laser interferes with image if standard RGB camera used
Lidar transceiver projects beams, collects return signal as feedback to algorithm

= No lidar system per se due to scaling relationships for beam projection

—  Small diameter transmitted beam combined with angular expansion to match scale of scene on screen necessarily result
in relatively larger beam spots and more significant diffraction and interference effects.

= Range gating not useful within lab distances; “scene” is flat projection on screen only

Hardware aligned/calibrated for extremely accurate beam angles relative to scene
= Demonstration is rough aligned to a visual level only (see above about spot sizes)

Ball Aerospace & Technologies Corp. 32
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PCAES Laboratory Hardware
Jeff Applegate
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Overall Configuration of Demo

2

Schematic of Demo system showing hardware components
Spatial light modulator (SLM) substituted for AOBD.

screen

SLM and
~ projection optics

‘ SLM controller

optical
fiber

Ball Aerospace & Technologies Corp.
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Image of Lab Demo During Use W

Ball Aerospace & Technologies Corp. 35
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@/ Scene Projection - Calibration

Photo of projection screen during demonstration (shows beam test pattern)

Ball Aerospace & Technologies Corp. carth e nes ach i oal Gifice



Test laser system:
Uses a Coherent
Genesis laser -
532nm optically-
pumped
semiconductor laser

—

8

Spatial light
modulator
(SLM)

B R

Ball Aerospace & Technologies Corp.
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Optical Layout of Beam Projector W

collimating
lens laser
input
mirror =
to screen from
computer
< 0

Component details:
Laser Coherent Genesis MX SLM-532: eye-safe fiber-coupled 532nm CW
Fiber Polarization-maintaining single-mode patch cable
SLM Meadowlark Optics P512 - 0532; XY nematic reflective series (512x512)
Beam reducer 20X refractive

Ball Aerospace & Technologies Corp. 38

€arth Séiencé Technology Office



Image of Optical Path W

collimator

20X beam SLM
reducer

Ball Aerospace & Technologies Corp. 39
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PCAES Laboratory Software

Nelson Kane
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SLM Powermap Generation Code W
Development

« Bin packing SW poses challenge (problem is NP hard), but we only
need approximate solution not optimal.
— Constraints, (1) pack sub-grating images into 512x512 array, (2)

minimum patch is = 64x64 pixels and close to square aspect, no left-over
pixels (or undefined pixels)

Select 3 largest

Output Of beam|etS Image of SLM pixels with phase levels included
optimization Transform -
SW, t, =2 powermap ’ Bin packing e
magnitudes & SW - Tree S
xy locations to structure S
grating patterns W
Select 16 512x512 bmp grating pattern —/
largest input to SLM with 3 sub-
Output of beamlets images .

optimization
SW, t, =3

512x512 bmp grating pattern — ;ﬁ
input to SLM with 16 sub- 0

images
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SLM Powermap Generation Code Development 7
— Simulation and Testing Validation \%

« Lab measurements correlate with simulation results except for extra
zero-order term (which can be minimized).

Log intensity image - NT tools - Fraunhofer propagator

Far field image
(simulated) £

0
2
a 0
3

2
<3

-200 -100 0 100 200
Field size (mm)

Far field image
(lab measureme

Simulation pixelation
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SW Graphical User Interface (GUI) & W
RT Control Interface (1/2)

e Lab SW interface to Laser HW
and RT SW processing.

« User sets up ground track

* SW extracts sub-image at each GUI for Lab Validation & Demonstration

time Instant. of PCAES Technology
* Variable number of laser beams .

E=SHCE" X
1 PCAES Simulation [¥] Display On [ Expand Scene
p e r tl m e Ste p " Land Sat Imagery Satellite View (visible) View Band
4 1 4 3-0.45 um)

 Matlab-based SW

I
2 |
5
nd
Land Sat Imagery .
‘‘‘‘‘‘ s |
[ | 2z, nowifice
. est Density
2x2 fixed
fixed p:
E fixed p:
- g

PCAES Controlled
Uniform Beam

Simulation Controls Settings Message Board

Boulder._tiff.mat Cmmepsies) off Width: | 256
mimi; |12

#Time Steps: | 100 Current step: 14
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SW Graphical User Interface (GUI) & RT

Control Interface (2/2)

%

Instantaneous
FOV of multi-
beam lidar

User select
scene from
folder

Nominal ground track
nadir pointing lidar

4| PCAES_SimulationGUI_v3

[¥] Display On

PCAES Simulation
Land Sat Imagery View Band

Band 1 (0.43-0.45 um

©) Band 2 (0.45-0.51 um)

() Band 3 (0.53-0.59 um)

_) Band 4 (0.64-0.67 um)

) Band 5 (0.85-0.88 um)
) Band 6 (1.57-1.65 um)
Band 7 (2.11-2.29 um

Band 8 {0.50-0.68 um

") Band 9 (1.36-1.38 um)

Science Metric

Objective

Energy Per Beam

L] =

@ Crops

_) Snow/ice Elevation
_) Forest Density

() 2x2 fixed pattern

) 3x3 fixed pattern

(7) 4xd4 fixed pattern

Value Measurement

PCAES Controlled
niform Beam

| Simulation Controls Message Board

[ smrr ][ pause |[MOVEFRAMEXI

Settings

Boulder_tiff_cloudy_2_1.mat A Width: | 256

1 Current step: 18
# Time Steps: 100 Beam limit: 12

[cLear |

[] sLM Communication

[ Expand Scene

—

J\

Enables RT control of SLM
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Output to
e projection
'

system

Landsat Vis/
IR bands
(darkened
bands are
scene
classification
& cloud ID

Scene classes
available

Test/ SW
validation
patterns for
calibration

Optimized
data collection
metric (see
next chart)
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@/ Science Collection Metric W

« All science data collection compared to single beam
lidar without adaptive beamlet control.

« The metric shown is the minimum achieved and does
not take into account the added value of multiple beams
which can increase the metric by 2 — 16 times more
data as calculated in the lab SW.

 When we are over homogeneous areas, an algorithm
using saliency (“the quality of being particularly
noticeable or important™) would be beneficial.
— Area of tremendous amount of research

— How important things are pulled out of a scene emulating
human capability.
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2

In conclusion, thank you to ESTO for funding this
work!
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