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Scientific Motivation

Clouds are the single most important source of uncertainty in predictions of climate
sensitivity.

Problem: passive radiometry is unreliable inside clouds because: (1) broad
weighting functions are used that encompass both clouded and cloud-free regions
and (2) clouds obscure the relationship between passive brightness temperatures
and water vapor.

Therefore, a remote sensing instrument capable of measuring humidity inside cirrus
clouds on a global scale is needed.



JPL’s Approach: 183 GHz Differential Absorption Radar

* Concept: use the scattering of ice crystals in cirrus clouds to measure range-resolved differential
absorption of radar signals on and off the 183 GHz water line.

* Similar to widely used lidar techniques (DIAL) and microwave differential absorption at 60 GHz
to measure integrated O, absorption from sea surface reflection.
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Radar Sensitivity Analysis
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What’s Needed to Make It Work

High-level overview:
* All-solid-state transmitter & receiver to achieve smallest SWAP.
* Ultra-high transmit/receive isolation for continuous-wave measurements.

* Wide tunability over the 183 GHz water line for probing a variety of cloud densities and depths.
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Power-Combining at 183 GHz

Four-way “on-chip” power combining 90 GHz in
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Quad-Chip 183 GHz Doubler
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Stacked-Chip Power Combining

* Higher powers likely if we push it
* Stable with 1.2W drive power (210 mW output) for >100 minutes
* 1 W goal is within reach with power-combining
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183-193 GHz Radar Test-Bench: Block Diagram

FMCW radar design based on
340/680 GHz security radar
architecture.

parabolic
reflector

LHC

polarization grating

RHCT
6 cm circular
\'}

GaAs  oc 103 GHz| |
28.7 GHz 92.5-96.5 GHz doubler - Z
|
@ /A x3 | x2 <7,
GaN PA ' o
wire grid
2.1-3.5 GHz
@ref (2&% X2
ramp generator
1.8 GHz InP LNA &
GaAs mixer
@ /\ 1 x3 [ 90.7-
28.1 GHz 94.7 GHz
\
ADC
A\ 3.6 GHz

3.5 MHz LPF



183-193 GHz Radar Test-Bench: Hardware

optics gain: 40 dB beam path

@

optics gain: 40 dB
receiver NF: 7 dB
detectable rain reflectivity at 300 m, 3 ms integration: -28 dBZ



Tree & Hill Clutter Measurements




Measuring Humidity Using Clutter Targets

averaging 300 MHz, 0.5 ms chirps 183.5:193 GHz spectra
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Clutter Target Statistics of Blowing Trees

189 GHz mean spectrum
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Rain (or Clouds): An Excellent Clutter Target

It finally rained at JPL!

* No more problems with blowing corner
reflector poles or tree branches

* No radiometer satellites were overhead:
transmitting 183-193 GHz is sensitive.




Crucial Technique: Fast Frequency “Switching”
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Accurate Humidity Measurements Are Possible!
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Conclusions

New power-combining architectures are being developed for a 183 GHz differential
absorption radar transceiver.

500 mW has been achieved, but for stable results new isolated-port power combining
designs are now being fabricated and tested.

Radar test-bench experiments show that differential absorption radar can effectively
measure humidity inside rain. This is a new measurement technique!

The measurements require fast frequency-switching when targets have potential for
decorrelating.
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