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% Collecting More High Value n
Earth Science Data

= Challenging budgets demand reconsideration data collection process and data
exploitation.

= The remote sensing field benefits from a myriad of sensors and sensor suites of
increasing capability and complexity. Meanwhile, on-board systems for real-time
control of instruments have been limited in general to a few traditional
architectures.

= Focus of this program is to optimize instrument or instruments data collection
capability using advanced software architectures.
= Optimized systems many times result in complex systems. Characteristics are:

— Multiple constraints, nonlinear physics, time-varying systems, interacting,
multivariable systems and sometimes sparse data or missing data.

= Multiple Earth Science applications:
— Trend is for higher capability, scene-directed instruments in the future

— We focus program on multi-beam lidar systems (for example - electronically
steerable flash lidar (ESFL))
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% Significance of PCAES Work to nn
Future Earth Science Missions

= Tightening NASA budgets require new missions to (1) address the issue of data
collection efficiency and (2) consider smaller payloads which can still provide high
quality science. The PCAES contract is developing an on-board autonomous
software architecture that addresses both these areas.

PCAES targets a specific application of data collection with adaptive lidar but the

architecture is based on ground-based control of complex, hierarchical and

sometimes distributed subsystems. It collects much more data of importance for

Earth science by optimally targeting areas of interest.

— The software being developed for PCAES can be used for control of multiple
SmallSats /CubeSat's in formation and can optimize overall system performance of the
distributed sensors. DeltaSat concept to emphasize strawman mission.

—PCAES is a new development for space applications (as far as we are aware) which will
enable new types of sensor hardware systems and can take advantage of recent
developments in sparse signal processing and compressed sensing.

—PCAES works at the fastest time scales (<1 s), making use of advances in on-board
computation speed with FPGA’s.

—PCAES uses optimization-based control versus classical control. Computationally

intensive approach.
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MPC and it’s History of
% Applications nn

= MPC was invented in the process industry. Large, complex, multivariable systems with constraints
(flow rates, volumes, temperatures, etc), multi-level or hierarchical but with very slow time constants.

It’s an architecture not a set controller.

= Although there has not been problems with systems going unstable, the first stability proofs were not
developed until the mid-late 90’s.

= Two things have been a deterrent to adoption — computational burden and technology migration.

= Technology still evolving — many forms. - B Proposed
PCAES goals a Robotic vision Autonomous
lot in common systems vehicles &
— rovers
Economics ‘
modeling | Poy(\;er ‘ 4 SC Formation A
rids -
Process g flying Earth
industries — B — .
Wastewater | Automotive SC-I enc-:e
treatment B ESFL applications
_ L/
Biological Rendezvous &
: . systems docking
Computational capability - « - s
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% Heuristic Explanation of MPC

= Works very much how one drives a car.

— Continuous adjustment/ optimization of
steering and speed using visual feedback of
the operating environment while having an
embedded model of car operating parameters
( acceleration, turning sensitivity, braking) and
considering constraints (lanes, other cars,
max braking and acceleration). Predict ahead.

— Multi-layered (the person with smart phone
providing directions)

In fact — many approaches
to autonomous cars use a
version of MPC
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% Targeted Application -
Adaptive Lidar / ESFL

=

flash lidar (ESFL)

Py
e |
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Beam

ex?ander

Acousto-
optical Beam

256x256
ROIC
detector

CaE
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= AOM controls RF Deflector(s)
amplitude and angle (AOBD)
(frequency) of each MPC-
beamlet Based
independently. Beam 120’?0;'
= 2D beam steering Controller co:l:f;ez °
= Constraints: ﬁ beams
— Total power ¥
— SNR
— Steering angle Lidar & Vis/ o |

NIR cameras
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Computational Speed Problem - Time
@ Evolution of Power Map from
Landscape and Clouds

= The example images are 10x10 -how power map changes as we go though a
cloudy area. Simple weighting — clouds very penalized, water least penalized.
Prior data collection not included

= Estimate center-to-center distance of the 15t to 4t sub-image takes ~14 seconds
to traverse. ~20 mi squares or *1.35 deg (at 700 km)

Ground track and moving FOV Power map before thresholding

over Panama canal _
—
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5

= Lidar return data
sparse - typically 1%
of pixels. Need
estimated return lidar
power in all 256x256

pixels of ROIC receiver.

= Light flux measured by
the lidar and camera is
made up of two
components — direct
component (non-
scattered) and diffuse
component (scattered).

= Due to solar zenith
angle, light seen by
camera not same as
lidar return signal.
Lidar return at hotspot.

Velocity
vector @@
o O & Mutti-
Camera |_| beam,
1 with look- pulsed
ahead lidar with X
Multi- T ROIC- Lidar data
visible and pas based ) Direct
IR 2D is sparse
near S (red dots) component
bands — 1 LC ' sensor N
band amera A .
aligned view ﬁ Diffuss
with lidar A °mp°”e”t |
Solar zenith
angle (SZA)
I | t The view
g i zenith angle
) (ol 2L (VZA) ~0
EETAIICEE e o
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% What Camera Sees is Different
Than What Lidar Sensor Sees

= The difference between the camera measured signal and the lidar return can be
significant and gets worse as the solar zenith angle increases.

= Below is shown mean reflectance - every ground pixel will have variability.

Normalized lidar return Camera measured signal (sun
signal with noise bars @ 45 deg) with noise bars
Calculation results for extent: -110, 38 -105, 42 A% Calculation results for extent: -110, 38 -105, 42 -lx
BRDF Transect Plane - land | Download Data | DebugLog BRDF Transect Plane - land | Download Data | Debuglog
o PRDF Graph - land pixels (2000), Extent: -110.0,38.0 -105.0,42.0 o RDF Graph - land pixels (2000), Extent: -110.0,38.0 -105.0,42.0
——— ADAM — ean ADAM
— min Reflectance Database 0gl| — min Reflectance Database
06 — max Month: Jul — max Month: Jul
stdev Lats: 07 il 38 050:41.950
I-023.050:41.950 Lons:
N - - S
05} | Sz'ipg'gsoz'los‘os 06 7 szi?z's?go' 105.05
g Wavelength: g W‘:dviil'eggéhr;m
< Min: 858 nm i) "
204 Max: 858 nm b 03 Max: 858 nm
B B
£ 04
0.3
0.3
0.2 A 02
- T oal—— . . - .
o1l . ‘ . —60 —40 —20 0 20 40 60
—60 —40 -20 0 20 40 60 view zenith angle (deg)
view zenith angle (deg)
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Z Technical Challenges and n“
% Solution Path (1/2)
= Realized that we need an on-board classification system.
— We are starting with simple approaches where possible. We do not need a
high end classifier. Experiments by Reuben look promising for simple color
ratio classification.
= Given very large memory storage and extremely powerful
computers, we could brute-force are way to a software solution.

— On-board DEM and scene classification reduce computational requirements
but at the cost of additional memory requirements.

— Work has been done on “multi-resolution trees (MRT)” allows one to use
coarser data grids and may provide a compromise approach
= Lidar return data will be very sparse over defined 2D field of view
and provides challenge to predictor over entire field.

— The scene classifier simplifies task of estimating power by reducing
problem dimensionality.

— Heritage data.
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% Technical Challenges and
Solution Path (2/2)

* Incompatibility of different remote sensing data products.

— Different resolutions, file types, processing levels, etc require use of
software tools like Matlab Mapping toolbox and community developed tools
including NASA and universities.

= We have no real model for MPC, and the same scene changes with
time (seasonal).

— Data driven approach

— Scene classification creates a group of pixels with similar reflection or
power return thereby creating a model
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MISSION ANALYSIS &

DEFINITION

ESTABLISHING BASIC MODEL
PARAMETERS
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% Mission Definition - DeltaSat n“

= Mission lidar parameters (wavelength(s), SNR requirements, etc)
very dependent upon science requirements. However, we will
generate generic lidar mission for ground DEM and foliage
characterization with focus on changes from heritage data -
DeltaSat.

— Need for SNR calculations of lidar beams for lidar power map beam
distribution.

— On-board computation and processing

= Use of slightly modified version of lidar Radiometric Math Model
used and validated on Calipso with extensive improvements for
ground and foliage return signals (see Table next page)
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%

Mission Level Definition and
Requirements

Parameter Value Units Comments

Orbit altitude 440 km

Spot size per beam 30 m Landsat size — application driven

Across-track swath width 7.68/ 1.0 Km/ deg (instrument FOV)

Solar background 0.0309 W/m? sr nm

Background noise, Detector noise 1, 8 Photons/time bin/pixel

Laser pulse energy/ Average power 1000/ 30 mJ/ W Fibertek SQ laser — 1064 nm, eye-
safe concern 1 beam

Maximum®* SNR ground return [1 beam, 10 [243 66 15.7] SNR Maximum SNR of waveform

beams, 100 beams] return. 1 beam case not deflected.

Maximum®* SNR foliage return [1 beam, 10 [96 25 3.3] SNR Maximum SNR of waveform

beams, 100 beams] return. 1 beam case not deflected.

Number pixels per footprint 1 - Max SNR but poor resolution

iFOV 68 [ZJrad

Detector size 256 x 256 -

Receiver telescope diameter 1 m CALIPSO telescope design

Number of pixels across per degree FOV 256 -

Range bins 61

Resolution of lidar range 0.7 m

Ball Aerospace & Technologies Corp. Proprietary Information
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Lidar Return SNR Depends Upon
Surface and # of Beams

5

= Example output from Lidar Radiometric

Reflectance variation of surfaces

Model — ground and nominal foliage ]
. 60 ' C\iﬂ: wst|[ I eossssonse Snow and ice
return signal. -0l -
[}
L] n ] g
= Radiometric calculations for 1064 nm, but &= ot
L] 5 ".' -
Landsat/ MODIS data used in PCAES : i
) M|
modeling is 850 nm band. I
% i Needle leaf vegetation
SNR of lidar return signal ® , L\
70 T ! T T \ A=1 064 nm === Turbid water
* ; | % 30lidar beams < Clear water
BObL--eommnmmbogieoeeeeiboooo..i] %10 lidar beams || 04 06 0’8 10 12 14
\_ : : Wavelength (um)
[0 f* ______ G [Qund________,E______________E_ ____________ | Figure 10. Spectral reflectance curves for the following paired landcover types (Aronoff, 2005):
H ' H ' e Clouds vs. Snow & ice e Broadleaf vegetation vs. Needle leaf vegetation
: ; : : e Dry soil vs. Wet soil e Turbid water vs. Clear water
) S . AU S -
& * : : : 5483
& i : Nominal ! 022528 | Near Infrared I
fc10 )| P | TR S S, _ LI T T T T T T T T T T T
*: - foliage L~ ~——— -
: m : : 80 |- S~ Fresh snow
' - ' - \
20 e i SNR S 107 g b wesoon |\ -
¥ T L i ' 20T N ~—a Light soil _ . —-—- -
10---.—.--.-.*-4:.. : -.*. : I L '% B Grass S B Nt AN
: : 5 O0r
i [
E)10 0 40 |
Lol D BB I R ey e e
SNR = Signal photons in each bin/ Noise photons in each bin Have gguh (ki
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24 SNR for ICESat/ GLAS LIDAR

: 1400 12
= Histogram of GLAS oo | =Tt o
SNR for several types 5 1000 55
of terrain indicates 10— | £ .| : o
23 dB (10 to 200) range | = Y
200 A .
of returns. 0 S ol .
0 10 20 30 0 10 20 30
= We assume minimum SNR (dB) SNR (dB)
SNR =10 for PCAES 2500 -
mOdeIing 3000 - 200 Water body |
) > 2500 - >
& 2000+ § 1501
g 1500- € 100-
" 1000 - -
500 - %07
0 . . 0 . .
0 10 20 30 0 10 20 30
SNR (dB) SNR (dB)

S. Nie, et al, “Signal-to-noise ratio-based quality assessment method for
ICESat/GLAS waveform data”, Opt. Eng., 53(10), Oct 2014.

Ball Aerospace & Technologies Corp. Proprietary Information



% PCAES Work Focused on Daytime mn
E Operation and Optimal Pixel Targeting

= Nighttime Operation - Large
efficiency gains also

— Cloud detection works at night with
mid-IR band.

— Ground registered heritage data bases.

— Moon glow imaging sensor

+*VIIRS DNB sensor band
— Panchromatic (0.5 - 0.9 pm)

— Active radar payload
= Optimal range gate control

— Much simpler problem to solve

— On-board global DEM map helps to
provide initialization.
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5

= On-board memory requirements
(global land coverage — no

Including Heritage Databases into “n
Estimator - On-Board Memory

With data compression Iarge AIRBUS
on-board heritage databases 2.5TB
are feasible drive
" SWR (6U)

compression) — 100 m/ 30 m pixels viking
orbiter
— BRDF heritage -90 GB/ 1.0 TB 2,".‘:‘,1?
surveyor,

— DEM heritage — 75 GB/ 0.85 TB

— Scene classification heritage - 22
GB/0.25TB

— Total ~190 GB/ ~2.1 TB
= Memory capabilities shouldbe >
around 0.4 TB for 6U cubesats and

4 TB for full size spacecraft by
2020.

= |CESat-2 plans to carry multiple
databases including global DEM.

— 30 m to 1 km ground pixel size.

Ball Aerospace & Technologies Corp. Proprietary Information
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On-board memory (MB)
>
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01975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

See
http://www.cpushack.com/space-craft-cpu.html for
years 1975 - 2011.

See SWRI and AIRBUS sites for 2015-2016 data.




5

= Camera/ ROIC array size, AOM
deflection range, and ground
spot pixel size determine
computation sample rate.

= With a 256x256 camera/ ROIC,
and orbit parameters given, a
new scene occurs 1.1 s.

= Sample rate goal set at 30 Hz for
lidar and computation rate of
FPGA.

— Trade between computer update
rate and algorithm complexity on-

going.

Algorithm |
complexity |

Ball Aerospace & Technologies Corp. Proprietary Information
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PCAES ARCHITECTURE

CSTO ...
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Two things are
controlled —
lidar power to
ground pixels
and dynamic

Diagram

Simple MPC Architecture

Max information -

Supervisory control
*Operatingmode
*Co-registration
*Orbit and geolocation
*Ground and spacecraft|/F

salient regions

::>-Forrest canopy

*Target revisit, etc
*Follow ground

Constraints,
Objectives,

feature (river, etc)

range gate. Weights Cc;orgcvn:pto(l)ed
Estln.lator 0 _ Optimizer ground pixels
pred|cts return Min(cost function)
power to ROIC Subjectto C,y=d, n ~ Return power,
= & Distance

receiver. Commands Controller [ Plant Outputs
Supervisory Y u=kx Dynamics :
control passes Scene

p. Basic MPC
down weights. components
Optl m 1zer Estimated Predictor/ Sensor & signal
algorlthm Estimator processing 1
requires scene  PoWerto ~ /
classification. each pixel
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% Unusual Characteristics of Our “Plant” m“
E Leads to Data Driven Approach

= We have to go to a data-driven ___Conmolled Objects__ Control Methodologies
control (DDC) approach because - ailable < Csing MBC design methods
there is no conceivable R e e e
mathematical model for the time- < control, elc.
varying scene ... well kind of true. co.niﬁ'ﬁféﬁhi}‘fﬁfiili_lﬁ?g(’h‘_‘ilréir o | Using DDC methods

* Data driven approach uses the lidar | ey T
return data as the model. We take it (0 establish or unavailable <
one step further by doing scene Fi. 3. Contrlled object o DDC.

classification (system ID) - reduces
model from 256x256 to perhaps
10-20 regions in the FOV.

= Qur “actuators” are the lidar
beamlets and the sSun (day‘hme Z.-S. Hou, “From model-based control to data-driven control:
. Survey, classification and perspective”, Inf. Sci., 235 (2013) 3-35.
operation). We only control one and
it only collects sparse returns over
FOV (1% type numbers).

ESFL MPC in this
category
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Apply thresh-holding and

reallocate PM

Powe

rma

Assume full | /

Finer Definition of MPC Architecture - Better
Understanding of MPC Loop and Data Flow

Weights 2D control Time-varying plant
. Optimizer
Constraints Min(cost function) YHaCt’
Cost Subject to C,y[Z]d, U, | Power to AOM & g
function IRt | angle map _: driver el
4+ Laser ‘ k
MPC pulse and| Pulsed laser
components range and optics
gate
Find sharp vegetation
- Classify scene transition at 0.7 um IR camera
| data (NxN)
Translate power to
| lidar wavelength
Y eos Power 1_____] _ < Visible
prediction » Update power Estimate power camera
k state w/ sparse lidar from data ¢ (256x256)
data <
Lidar
Updated Update Extract DEM detector #—
Y= power DEM(H,) and DEM data data (256x256)
H=G other science
= rqund data products T
elevation y - 61
_ ssume
U = Control —> DEM data base waveform data

output arrays,
power map and
range gate

To supervisor
level

256x256)

(interpolated to

bins — sparse X/Y
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w5 PCAES End-to-End Model mn

= PCAES driver file:

— Reads in all data bases
selected - if global, pulls out
strip.

+»» Reflectance data for selected

wavelengths
° Global land cover classification (IGBP) Histogram of IGBP pixel classification for sub-region
+» MODIS reference 41 ——
classification P
— Interfaces with RT scene w5 R
classification algorithm (in Cropend
p ro cess) 40 Savannahs Grassland
= Savannahs
— Runs reflected power estimation H pes i
H = Open shrubld pen shru
algorlthms 3 395 eremetos Close shrubld
Mix forest |-----
— Inputs data from lidar Deciduous BF
H u Deciduous BF Deciduous NF
radiometric math model. - Evergroen BF
. . . . Deciduous NF Evergreen NF
— Interfaces with optimization Water| -~
routine (in process) s Evergreen NF Y2l r?t?r?\be?r’%?pb‘(‘ggforsggchsgzegﬁ);l) 500

-108 -107.8-107.6-107.4-107.2

— Generates large variety of output Longtude (deg)
plots

ES TQ Page_24
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SCENE GENERATION
- MODEL AND LAB TESTING
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% Abundance of Real Satellite Scenery
Provided Best Path Forward (1/3)

= MODIS data products:

— Global BRDF and scene classification — 6.5 km

pixels Global land cover classification (IGBP)
< Matlab SW extracts test strips and can pull 7 o TR i T,
spectral bands W Wm
++ IGBP classification — 17 categories and we add in § ol )
clouds. S 0 B
— US data base at 500 m and 1000 m pixels. w] oo e
— Downloaded from Earth Explorer. —
¢ Level 2 and 3 data - clouds removed and
atmospheric corrected BRDF.
— Also pulled in level 1b data that was not
processed for clouds & aerosols.
= Landsat data base: H : 3
— 30 m pixel size data matches camera pixels * el - - "

-
[

. : =] L 17 +
— Variable amount of clouds. & s e T
900 1400 1900 2400 \/\ 1000(
— Multiple spectral bands useful for classification

» O

Wavelength (nm)

€5 TQ Page_26
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% Abundance of Real Satellite Scenery
Provided Best Path Forward (2/3)

= ADAMS (A surface reflectance Database for ESA’s earth observation
Missions)
— Provided reflectance (BRDF) data for global area but with 11 km pixels.
— Generated variance and BRDF shape information
— Allowed us to look at reflectance and sensitivity effects

All maps are created using standard ilumination and viewing Calculation results for extent: -110, 38 -105, 42 A%
qeometry, (45°and 0°)

Perform Calculation / Download Spectrum Graph - land Download Data Debug Log

Egectrum Graph - land pixels (2000), Extent: -110.0,38.0 -105.0,42.0

Lat Max: 42 ADAM
Long Min: -110
Reflectance Database
Lat Min: 38
Long Max: -105 Month: Jul
Lats:
Operation P 8 38.050:41.950
rrrrrrr
eeeeeeeee Lons:
Operation: Graph: Spectrum ¥ -109.950:-105.05
Instrument: Landsat 8 - LDCM | ¥ SZA: 0.0
g g VZA:[0.]
Month: Jul e ] phi: [ 0.]
Tlum. Zenith Angle: 0 ‘g
=
View Zenith Angle: 0 14
Relative Azimuth Angle: 0
Compute Error: No o

Determination of the pixel reflectance spectra over the
300-4000 nm domain, for the defined obs:

500 1000 1500 2000 2500 3000 3500 4000
wavelength (nm)

= |ssues:
— Data is not always compatible - different projections, pixel scales, units, file types,

etC. ,—s
ES r Q Page_27
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OPTIMIZATION & SCENE
CLASSIFICATION




% Overview Of Optimization &

Classification
= Represents first iteration of optimization : :
. . Estimated Multi-band
with SIngIe scene look ahead Power Map Image
= [nputs:
— Objective function
“* Weights [ascr
«* Science objectives Cpovrer_ t Land Cloud ID
— Cloud map (by pixel) onstrain Classification Algorithm
. T . Existin
— Desired pointing locations for each Databagqe
science objective
Science
— Map of where data has been collected Database
already
. . Science
— Map of estimated power required for each | opjectives /
pixel Weights

— Constraints

. Send Beam Angles & Power To
* Outputs: AOBD Controller

— Power map (by pixel) for next frame

— Range gates
Ball Aerospace & Technologies Corp. Proprietary Information
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% Scene Classification nn
Overview

= Primary objective is to avoid clouds

— Earth is 70% covered with clouds, so avoiding clouds is the biggest gain to
be realized

= Secondary objective to identify difference in land type so science
can be prioritized

= Attempt to limit the number of bands needed to avoid expensive
instruments for the look-ahead camera

— Current work uses 6 bands from Landsat-8
+*Green and SWIR1 for snow index
++*Blue and cirrus for cloud-vegetation differentiation
**Red and NIR for vegetation index

— Can be implemented with less precise instrument for rapid on-orbit
classification
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Cloud Identification

= Clouds are difficult to separate from
snow and ice
— Uses NDSI (snow index)
+ Green & SWIR1 bands
— Uses blue and cirrus bands

+ Ratio separates clouds from
vegetation easily

= Upper images are a cloud bank over
Colorado with snow on the mountains

— Only small bits of snow are labeled as
cloud

= Lower image is a mix of high and low
altitude clouds over Colorado (no
show)

— High altitude clouds are frozen, so
look like snow if the correct bands are
not available

— Misses at transition from ice clouds to
vapor clouds and in wispy icy clouds

Ball Aerospace & Technologies Corp. Proprietary Information
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@ Vegetation Classification

= Early work used NDVI thresholds to More actively
determine the terrain type growing vegetation
— Works, but is a bit crude Simple NDVI Threshold Clasaificat
+»* Requires tuning by region 3

200

400

600
800 I pcas s ST
1000 [t

— Computationally fast, and only requires 1200
two bands 1400

+ Band 4 - Red 1600
+ Band 5-NIR
= NDVI = (NIR-red)/(NIR+red)

— Data input in raw DN for my tests to
simulate the raw data that would be

1800

2000

Less actively

i : . growing
available for on-orbit processing vegetation, water,
= Many papers show improved methods, but and concrete/
asphalt

rarely produce significantly better results

s 7 Q Page_32
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LIDAR RETURN POWER
ESTIMATION
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% Approaches to Power
Estimation (1/4)

Lidar Estimated lidar
Approach 1 ::;al:; _l return_l return power
Direct (TOA) in
—| Pixelated Lambertian Scale to lidar | _256x256 array
—— Scene reflection return power
Indirect Camera Transfer to
nadir SZA=0

Estimates all pixels in Very simple Assumption of Lambertian deviates as
camera array, lidar computationally. Does  solar angle increases - BRDF not
spectral band, reflection not use any lidar cycles Lambertian function. No heritage or a
described by Lambertian to calibrate specific priori data incorporated and doesn’t

function. Correction for classifications as all the  improve collection efficiency over time.
the angle between VZA other approaches do but No path to update scene classification

and SZA, and a single calibrates from science  errors. Works poorly for high value data
lidar return scale factor data already taken in — mountainous regions and urban areas.
applied. lidar FOV. Updates all

pixel values.

€5 TQ Page_34
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Approaches to Power Estimation (4/4)

e -
" cale m(s)= A ST %
NDVI I I — I—b °® 500 n:i:tearitage :g 4 g
Direct NN
> Pixelated Scene Lidar sample MRT Scale m(s)=2 l
» Scene classification  of each class _ _
Indirect Camera Estimated lidar
view @, - Kernel inversion Kernel-basgd S Data fusion return power
i > to solve for BRF SZA correction (MRT, EOF, etc) (TOA) in
. to pixels 256x256 array

v

y

Direct . coefficients
Plé(elated Transfer to
> jce“e o nadir SZA=0

Indirect C_amera . f pl‘lotI:I Most proposed kernel models are linear and solved by least squares. There are nonlinear
view @y Information kernels that require iteration but take into account the hot spot and seasonal changes in
the BRF by incorporating directly the NDVI using two bands [Latifovic2003]

D | Description | Attributes | Issues
Same as approach 3  All above advantages asin 3, Large computational framework needs to
but uses multiple view but also generates real-time be studied to see if it fits within FPGA
camera so that there  BRF kernel coefficients which  capability. Requires additional global on-

is enough data to automatically incorporate board heritage data bases. Inversion
compute kernel aerosols and clouds. Can use instabilities possible with poor or noisy
inversion equation to BRF kernel with extra term to data but this is usually stabilized with a

get actual kernel account for SZA=VZA effect priori information. Requires a camera with
coefficients. (hotspot). large multi-angle look-ahead capability .
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% Computing Predicted Power
Output Using BRDF

= The equation below computes the BRF from three terms: We have assumed kernel

functions are constant
(6 U, ¢, A) f, A) co (A) where (scalars) over small FOV.
Ko1s Kgeprand K g5 a

vol > ™ geo >

. terms are the coefficients.

coefficients for 645 nm band.

41F

Predicted reflectance - nadir view BRDF Albedo Parameterl Ba

41 41
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S 305 = 395 3 H01 S sl 0.03
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Processing Hardware

Hardware Architecture
Memory Technologies
Acquisition & Processing Board(s) Bulk Memory Fast A DPSRAM
Board(s) Cache
Cameras > FPGA(s) [DPSRAM | K > DFE’ARM3
NAND
AN Flash N
Slow Flash
>
Small Large
DDR-3 RAM
N
Processing Technologies
Fast
AV AV 1 Froa
Microprocessor Cache MiCroDrocessor
Slow P
>
Simple, Complex,
Static, Dynamic,
DDR-3 RAM Pargllel Sequ_ential
Single-Board Computer Algorithms Algorithms
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