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Collecting More High Value 
Earth Science Data 

§  Challenging budgets demand reconsideration data collection process and data 
exploitation. 

§  The remote sensing field benefits from a myriad of sensors and sensor suites of 
increasing capability and complexity. Meanwhile, on-board systems for real-time 
control of instruments have been limited in general to a few traditional 
architectures.  

§  Focus of this program is to optimize instrument or instruments data collection 
capability using advanced software architectures. 

§  Optimized systems many times result in complex systems.  Characteristics are: 
─  Multiple constraints, nonlinear physics, time-varying systems, interacting, 

multivariable systems and sometimes sparse data or missing data. 
§  Multiple Earth Science applications: 

─  Trend is for higher capability, scene-directed instruments in the future 
─  We focus program on multi-beam lidar systems (for example – electronically 

steerable flash lidar (ESFL)) 
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Significance of PCAES Work to 
Future Earth Science Missions 

§  Tightening NASA budgets require new missions to (1) address the issue of data 
collection efficiency and (2) consider smaller payloads which can still provide high 
quality science.  The PCAES contract is developing an on-board autonomous 
software architecture that addresses both these areas. 

§  PCAES targets a specific application of data collection with adaptive lidar but the 
architecture is based on ground-based control of complex, hierarchical  and 
sometimes distributed subsystems.  It collects much more data of importance for 
Earth science by optimally targeting areas of interest. 
─ The software being developed for PCAES can be used for control of multiple 

SmallSats /CubeSat's in formation and can optimize overall system performance of the 
distributed sensors.  DeltaSat concept to emphasize strawman mission. 

─ PCAES is a new development for space applications (as far as we are aware) which will 
enable new types of sensor hardware systems and can take advantage of recent 
developments in sparse signal processing and compressed sensing. 

─ PCAES works at the fastest time scales (<1 s), making use of advances in on-board 
computation speed with FPGA’s.  

─ PCAES uses optimization-based control versus classical control.  Computationally 
intensive approach. 
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MPC and it’s History of 
Applications 

§  MPC was invented in the process industry.  Large, complex, multivariable systems with constraints 
(flow rates, volumes, temperatures, etc), multi-level or hierarchical but with very slow time constants.  
It’s an architecture not a set controller. 

§  Although there has not been problems with systems going unstable, the first stability proofs were not 
developed until the mid-late 90’s. 

§  Two things have been a deterrent to adoption – computational burden and technology migration. 
§  Technology still evolving – many forms. 
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Heuristic Explanation of MPC 

§ Works very much how one drives a car. 
─  Continuous adjustment/ optimization of 

steering and speed using visual feedback of 
the operating environment while having an 
embedded model of car operating parameters 
( acceleration, turning sensitivity, braking) and 
considering constraints (lanes, other cars, 
max braking and acceleration). Predict ahead. 

─ Multi-layered (the person with smart phone 
providing directions) 

In fact – many approaches 
to autonomous cars use a 

version of MPC 
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Targeted Application - 
Adaptive Lidar / ESFL 

§ We apply MPC 
architecture to an 
electronically steerable  
flash lidar (ESFL) 

§ AOM controls 
amplitude and angle 
(frequency) of each 
beamlet  
independently. 

§  2D beam steering 
§ Constraints: 

─  Total power 
─  SNR 
─  Steering angle 
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Computational Speed Problem - Time 
Evolution of Power Map from 
Landscape and Clouds 

§  The example images are 10x10 –how power map changes as we go though a 
cloudy area.  Simple weighting – clouds very penalized, water least penalized.  
Prior data collection not included 

§  Estimate center-to-center distance of the 1st to 4th sub-image takes ~14 seconds 
to traverse.  ~20 mi squares or ±1.35 deg (at 700 km) 

Ground track and moving FOV 
over Panama canal 

Power map before thresholding 
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Geometry of the Control 
Problem  

§  Lidar return data 
sparse – typically 1% 
of pixels.  Need 
estimated return lidar  
power in all 256x256 
pixels of ROIC receiver. 

§  Light flux measured by 
the lidar and camera is 
made up of two 
components – direct 
component (non-
scattered) and diffuse 
component (scattered). 

§  Due to solar zenith 
angle, light seen by 
camera not same as 
lidar return signal.  
Lidar return at hotspot. 

Solar zenith 
angle (SZA) 

The view 
zenith angle 

(VZA) ~0 
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What Camera Sees is Different 
Than What Lidar Sensor Sees 

§  The difference between the camera measured signal and the lidar return can be 
significant and gets worse as the solar zenith angle increases. 

§  Below is shown mean reflectance – every ground pixel will have variability. 

Normalized lidar return 
signal with noise bars 

Camera measured signal (sun 
@ 45 deg) with noise bars 



Page_10 Ball Aerospace & Technologies Corp. Proprietary Information 

Technical Challenges and 
Solution Path (1/2) 

§ Realized that we need an on-board classification system. 
─ We are starting with simple approaches where possible.  We do not need a 

high end classifier.  Experiments by Reuben look promising for simple color 
ratio classification. 

§ Given very large memory storage and extremely powerful 
computers, we could brute-force are way to a software solution. 
─ On-board DEM and scene classification reduce computational requirements 

but at the cost of additional memory requirements. 
─ Work has been done on “multi-resolution trees (MRT)” allows one to use 

coarser data grids and may provide a compromise approach 
§ Lidar return data will be very sparse over defined 2D field of view 

and provides challenge to predictor over entire field. 
─ The scene classifier simplifies task of estimating power by reducing 

problem dimensionality. 
─ Heritage data. 
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Technical Challenges and 
Solution Path (2/2) 

§  Incompatibility of different remote sensing data products. 
─ Different resolutions, file types, processing levels, etc require use of 

software tools like Matlab Mapping toolbox and community developed tools 
including NASA and universities. 

§ We have no real model for MPC, and the same scene changes with 
time (seasonal). 
─ Data driven approach 
─ Scene classification creates a group of pixels with similar reflection or 

power return thereby creating a model 
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MISSION ANALYSIS & 
DEFINITION 

ESTABLISHING BASIC MODEL 
PARAMETERS 
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Mission Definition - DeltaSat 

§ Mission lidar parameters (wavelength(s), SNR requirements, etc) 
very dependent upon science requirements. However, we will 
generate generic lidar mission for ground DEM and foliage 
characterization with focus on changes from heritage data – 
DeltaSat. 
─ Need for SNR calculations of lidar beams for lidar power map beam 

distribution. 
─ On-board computation and processing 

§ Use of slightly modified version of lidar Radiometric Math Model 
used and validated on Calipso with extensive improvements for 
ground and foliage return signals (see Table next page) 
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Mission Level Definition and 
Requirements 

Parameter Value Units Comments 
Orbit altitude 440 km 

Spot size per beam 30 m Landsat size – application driven 

Across-track swath width 7.68/   1.0  Km/   deg (instrument FOV)   

Solar background 0.0309 W/m2 sr nm   

Background noise,   Detector noise 1,  8 Photons/time bin/pixel   

Laser pulse energy/ Average power 1000/  30 mJ/  W Fibertek SQ laser – 1064 nm, eye-
safe concern 1 beam 

Maximum* SNR ground return [1 beam, 10 
beams, 100 beams] 

[243 66  15.7] SNR Maximum SNR of waveform 
return. 1 beam case not deflected. 

Maximum* SNR foliage return [1 beam, 10 
beams, 100 beams] 

[96 25  3.3] SNR Maximum SNR of waveform 
return. 1 beam case not deflected. 

Number pixels per footprint 1 - Max SNR but poor resolution 

iFOV 68 �rad   
Detector size 256 x 256 - 
Receiver telescope diameter 1 m CALIPSO telescope design 
Number of pixels across per degree FOV 256 -   

Range bins 61   
Resolution of  lidar range 0.7 m   
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Lidar Return SNR Depends Upon 
Surface and # of Beams  

§  Example output from Lidar Radiometric 
Model – ground and nominal foliage 
return signal. 

§  Radiometric calculations for 1064 nm, but 
Landsat/ MODIS data used in PCAES 
modeling is 850 nm band. 

Reflectance variation of surfaces 

λ=1064 nm 

Minimum SNR = 10 

Ground 

Nominal 
foliage 

SNR =  Signal photons in each bin/ Noise photons in each bin 
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SNR for ICESat/ GLAS LIDAR 

§ Histogram of GLAS 
SNR for several types 
of terrain indicates 10 – 
23 dB (10 to 200) range 
of returns. 

§ We assume minimum 
SNR = 10 for PCAES 
modeling. 

S. Nie, et al, “Signal-to-noise ratio-based quality assessment method for 
ICESat/GLAS waveform data”, Opt. Eng., 53(10), Oct 2014. 
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PCAES Work Focused on Daytime 
Operation and Optimal Pixel Targeting 

§ Nighttime Operation – Large 
efficiency gains also 
─ Cloud detection works at night with 

mid-IR band. 
─ Ground registered heritage data bases. 
─ Moon glow imaging sensor 

v VIIRS DNB sensor band 
─ Panchromatic (0.5 – 0.9 µm) 

─ Active radar payload 
§ Optimal range gate control 

─ Much simpler problem to solve 
─ On-board global DEM map helps to 

provide initialization. 
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Including Heritage Databases into 
Estimator – On-Board Memory 

§ On-board memory requirements 
(global land coverage – no 
compression) – 100 m/ 30 m pixels 
─ BRDF heritage –90 GB/ 1.0 TB 
─ DEM heritage – 75 GB/ 0.85 TB 
─ Scene classification heritage  - 22 

GB/ 0.25 TB 
─ Total ~190 GB/  ~2.1 TB 

§ Memory capabilities should be 
around 0.4 TB for 6U cubesats and 
4 TB for full size spacecraft by 
2020.  

§  ICESat-2 plans to carry multiple 
databases including global DEM. 
─  30 m to 1 km ground pixel size. 

See 
http://www.cpushack.com/space-craft-cpu.html for 
years 1975 - 2011.   
See SWRI and AIRBUS sites for 2015-2016 data.   

Line through data ---- 

Viking 
orbiter 

Shuttle 

Mars 
global 
surveyor 

AIRBUS 
2.5 TB 
drive 

SWR (6U) 

With data compression  large 
on-board heritage databases 

are feasible 



Page_19 Ball Aerospace & Technologies Corp. Proprietary Information 

Computational Resources 

§ Camera/ ROIC array size, AOM 
deflection range, and ground 
spot pixel size determine 
computation sample rate. 

§ With a 256x256 camera/ ROIC, 
and orbit parameters given, a 
new scene occurs 1.1 s. 

§ Sample rate goal set at 30 Hz for 
lidar and computation rate of 
FPGA.  
─ Trade between computer update 

rate and algorithm complexity on-
going. 

~9 new rows every 
sample at 30 Hz Trade 

Ground track 

Sample 
rate 

Algorithm 
complexity 
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PCAES ARCHITECTURE 
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Simple MPC Architecture 
Diagram 

•  Two things are 
controlled – 
lidar power to 
ground pixels 
and  dynamic 
range gate. 

•  Estimator 
predicts return 
power to ROIC 
receiver. 

•  Supervisory 
control passes 
down weights. 

•  Optimizer 
algorithm 
requires scene 
classification. 

Estimated 
power to 

each pixel 

Commanded 
power to 

ground pixels 

• Max information -  
salient regions 
• Forrest canopy 
• Target revisit, etc 
• Follow ground 
feature (river, etc) 

Return power, 
& Distance 

Scene 



Page_22 Ball Aerospace & Technologies Corp. Proprietary Information 

Unusual Characteristics of Our “Plant” 
Leads to Data Driven Approach 

§  We have to go to a data-driven 
control (DDC) approach because 
there is no conceivable 
mathematical model for the time-
varying scene … well kind of true. 

§  Data driven approach uses the lidar 
return data as the model.  We take it 
one step further by doing scene 
classification (system ID) – reduces 
model from 256x256 to perhaps 
10-20 regions in the FOV. 

§  Our “actuators” are the lidar 
beamlets and the sun (daytime 
operation).  We only control one and 
it only collects sparse returns over 
FOV (1% type numbers).   

 Z.-S. Hou, “From model-based control to data-driven control: 
Survey, classification and perspective”, Inf. Sci., 235 (2013) 3-35. 

ESFL MPC in this 
category 
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Finer Definition of MPC Architecture – Better 
Understanding of MPC Loop and Data Flow 

Assume full 
2D control 
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PCAES End-to-End Model 

§ PCAES driver file: 
─  Reads in all data bases 

selected – if global, pulls out 
strip. 
v Reflectance data for selected 

wavelengths 
v MODIS reference 

classification 
─  Interfaces with RT scene 

classification algorithm (in 
process) 

─  Runs reflected power estimation 
algorithms 

─  Inputs data from lidar 
radiometric math model.  

─  Interfaces with optimization 
routine (in process) 

─  Generates large variety of output 
plots 
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SCENE GENERATION 
- MODEL AND LAB TESTING 
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Abundance of Real Satellite Scenery 
Provided Best Path Forward (1/3) 

§ MODIS data products: 
─  Global BRDF and scene classification – 6.5 km 

pixels 
v Matlab SW extracts test strips and can pull 7 

spectral bands 
v IGBP classification – 17 categories and we add in 

clouds. 
─  US data base at 500 m and 1000 m pixels. 
─  Downloaded from Earth Explorer. 

v Level 2 and 3 data – clouds removed and 
atmospheric corrected BRDF. 

─  Also pulled in level 1b data that was not 
processed for clouds & aerosols. 

§ Landsat data base: 
─  30 m pixel size data matches camera pixels 
─  Variable amount of clouds. 
─  Multiple spectral bands useful for classification 
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Abundance of Real Satellite Scenery 
Provided Best Path Forward (2/3) 

§ ADAMS (A surface reflectance Database for ESA’s earth observation 
Missions) 
─  Provided reflectance (BRDF) data for global area but with 11 km pixels. 
─  Generated variance and BRDF shape information 
─  Allowed us to look at reflectance and sensitivity effects 

§  Issues:  
─  Data is not always compatible – different projections, pixel scales, units, file types, 

etc. 



Page_28 Ball Aerospace & Technologies Corp. Proprietary Information 

OPTIMIZATION & SCENE 
CLASSIFICATION 
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Overview Of Optimization & 
Classification 

§  Represents first iteration of optimization 
with single scene look ahead 

§  Inputs: 
─  Objective function 

v Weights 
v Science objectives 

─  Cloud map (by pixel) 
─  Desired pointing locations for each 

science objective 
─  Map of where data has been collected 

already 
─  Map of estimated power required for each 

pixel 
─  Constraints 

§  Outputs: 
─  Power map (by pixel) for next frame 
─  Range gates 
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Scene Classification 
Overview 

§ Primary objective is to avoid clouds 
─ Earth is 70% covered with clouds, so avoiding clouds is the biggest gain to 

be realized 
§ Secondary objective to identify difference in land type so science 

can be prioritized 

§ Attempt to limit the number of bands needed to avoid expensive 
instruments for the look-ahead camera 
─ Current work uses 6 bands from Landsat-8 

v Green and SWIR1 for snow index 
v Blue and cirrus for cloud-vegetation differentiation 
v Red and NIR for vegetation index 

─ Can be implemented with less precise instrument for rapid on-orbit 
classification 
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Cloud Identification 

§  Clouds are difficult to separate from 
snow and ice 
─  Uses NDSI (snow index) 

v  Green & SWIR1 bands 
─  Uses blue and cirrus bands 

v  Ratio separates clouds from 
vegetation easily 

§  Upper images are a cloud bank over 
Colorado with snow on the mountains 
─  Only small bits of snow are labeled as 

cloud 

§  Lower image is a mix of high and low 
altitude clouds over Colorado (no 
snow) 
─  High altitude clouds are frozen, so 

look like snow if the correct bands are 
not available 

─  Misses at transition from ice clouds to 
vapor clouds and in wispy icy clouds 
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Vegetation Classification 

§  Early work used NDVI thresholds to 
determine the terrain type 
─  Works, but is a bit crude 

v Requires tuning by region 
─  Can’t differentiate between scrubland and 

sparse forest 
─  Different input images show that NDVI is 

more related to rain and subsequent 
growth rate 

─  Computationally fast, and only requires  
two bands 
v Band 4 – Red 
v Band 5 – NIR 

§  NDVI = (NIR-red)/(NIR+red) 
─  Data input in raw DN for my tests to 

simulate the raw data that would be 
available for on-orbit processing 

§  Many papers show improved methods, but 
rarely produce significantly better results 

More actively 
growing vegetation 

Less actively 
growing 

vegetation, water, 
and concrete/

asphalt 
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LIDAR RETURN POWER 
ESTIMATION 
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Approaches to Power 
Estimation (1/4) 

Approach 1 
Direct 

Indirect 

Pixelated 
Scene 

Lambertian 
reflection 

Solar 
angle 

Transfer to 
nadir SZA=0 

Lidar 
return 

Scale to lidar 
return power 

Estimated lidar 
return power 
(TOA) in 
256x256 array 

Camera 

ID	 Descrip)on	 A-ributes	 Issues	
1	 Es$mates	all	pixels	in	

camera	array,	lidar	
spectral	band,	reflec$on	
described	by	Lamber$an	
func$on.		Correc$on	for	
the	angle	between		VZA	
and	SZA,	and	a	single	
lidar	return	scale	factor	
applied.	

Very	simple	
computa$onally.		Does	
not	use	any	lidar	cycles	
to	calibrate	specific	
classifica$ons	as	all	the	
other	approaches	do	but	
calibrates	from	science	
data	already	taken	in	
lidar	FOV.		Updates	all	
pixel	values.	

Assump$on	of	Lamber$an	deviates	as	
solar	angle	increases	-	BRDF	not	
Lamber$an	func$on.		No	heritage	or	a	
priori	data	incorporated	and	doesn’t	
improve	collec$on	efficiency	over	$me.		
No	path	to	update	scene	classifica$on	
errors.		Works	poorly	for	high	value	data	
–	mountainous	regions	and	urban	areas.	
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Approaches to Power Estimation (4/4) 

Pixelated 
Scene 

Approach 4 

Scene 
classification 

Lidar sample 
of each class 

Kernel-based 
SZA correction 

to pixels 

Camera 
view φ1 

NDVI 

Transfer to 
nadir SZA=0 

Pixelated 
Scene 

Direct 

Indirect 

Camera 
view φN 

Kernel inversion 
to solve for BRF 

coefficients Direct 

Indirect 

Data fusion 
(MRT, EOF, etc) 

Estimated lidar 
return power 
(TOA) in 
256x256 array 

MRT 

A priori 
information 

fi 

ID	 Descrip)on	 A-ributes	 Issues	
4	 Same	as	approach	3	

but	uses	mul$ple	view	
camera	so	that	there	
is	enough	data	to	
compute	kernel	
inversion	equa$on	to	
get	actual	kernel	
coefficients.	

All	above	advantages	as	in	3,	
but	also	generates	real-$me	
BRF	kernel	coefficients	which	
automa$cally	incorporate	
aerosols	and	clouds.		Can	use	
BRF	kernel	with	extra	term	to	
account	for	SZA=VZA	effect	
(hotspot).	

Large	computa$onal	framework	needs	to	
be	studied	to	see	if	it	fits	within	FPGA	
capability.		Requires	addi$onal	global	on-
board	heritage	data	bases.		Inversion	
instabili$es	possible	with	poor	or	noisy	
data	but	this	is	usually	stabilized	with	a	
priori	informa$on.		Requires	a	camera	with	
large	mul$-angle	look-ahead	capability	.	

Most proposed kernel models are linear and solved by least squares.  There are nonlinear 
kernels that require iteration but take into account the hot spot and seasonal changes in 
the BRF by incorporating directly the NDVI using two bands [Latifovic2003] 
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Computing Predicted Power 
Output Using BRDF 

§  The equation below computes the BRF from three terms: 

§  The kernel functions can be pre-computed knowing the solar zenith angle, the view zenith 
angle and the relative azimuth angle.  Below is a plot of  selected sub-region with 3 
coefficients for  645 nm band. 

( ) ( ) ( ) ( ) ( ) ( )
ts.coefficien the are terms f the and kernels g scatterinthe are K and K K

  where

ifwdgeovol ,,

KfKff,,,R geogeovolvoliso ΛΛ+ΛΛ+Λ=Λφϑθ

= + + 

We have assumed kernel 
functions are constant 
(scalars) over small FOV. 

*Kvol *Kgeo 
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FPGA IMPLEMENTATION 
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Processing Hardware 
Architecture 

Acquisition & Processing Board(s)

FPGA(s)

DDR-3 RAM

DPSRAMCameras

Bulk Memory 
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NAND
Flash
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Microprocessor Cache
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DDR-3 
RAM

NAND 
Flash
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Memory Technologies
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Parallel

Algorithms
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Dynamic,

Sequential
Algorithms
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Processing Technologies

Hardware Architecture


