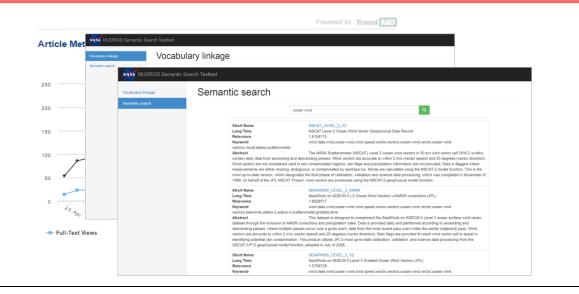
Mining and Utilizing Dataset Relevancy from Oceanographic Dataset (MUDROD) Metadata, Usage Metrics, and User Feedback to Improve Data Discovery and Access

Chaowei (Phil) Yang, Yongyao Jiang, Yun Li, George Mason University

Edward M Armstrong, Thomas Huang, David Moroni, Chris Finch, Lewis Mcgibbney, JPL, NASA

... - cience Technology Forum, June 14-16, 2016, Annapolis, MD 1



Mining and Utilizing Dataset Relevancy from Oceanographic Data (MUDROD)

PI: Chaowei (Phil) Yang, George Mason University

<u>Objective</u>

- Improve data discovery, selection and access to NASA Observational Data.
 - Intuitive interface to federated data holdings.
 - Enable new user communities to discover and access data for their projects.
 - Reduce time for scientists to discover, download and reformat data.
 - Implement extensible ontology framework.
 - Improve discovery accuracy of oceanographic data
 - Foundation for Managing Big Data.
- Demonstrate MUDROD at PO.DAAC.

<u>Approach:</u>

- Setup collaboration, testing environment.
- Design MUDROD knowledge base system.
- Develop P.O.DAAC user service.
- Update semantic search and conduct alpha testing.
- Integrate MUDROD alpha into P.O.DAAC.
- Enhance knowledge base, to include GCMD.
- Integrate selected datasets from ECHO.
- Outreach to GEO
- Demonstrate Prototype.

Cols: T. Huang, D. Moroni, E. Armstrong, JPL;

TRL_{in} = **5**, **TRL**current = **6** Farth Science Technology Forum, June 14-16, 2016, Annapolis, MD 2

Key Milestones

Identify Use cases

• Integrated test

Design search, guery, reasoning engine

PO.DAAC metadata discovery Demo (TRL 7)

Ontological System Implementation

• Complete Beta test at P.O. DAAC

• Start

06/15

01/16

03/16

07/16

12/16

02/17

05/17

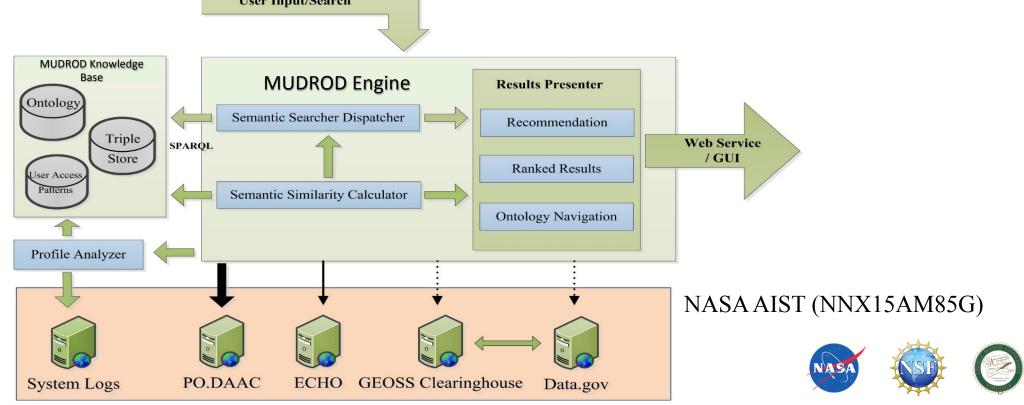
- Context
- Objectives
- Data
- Mining concept linkage multi-sources
- Integration
- Demo



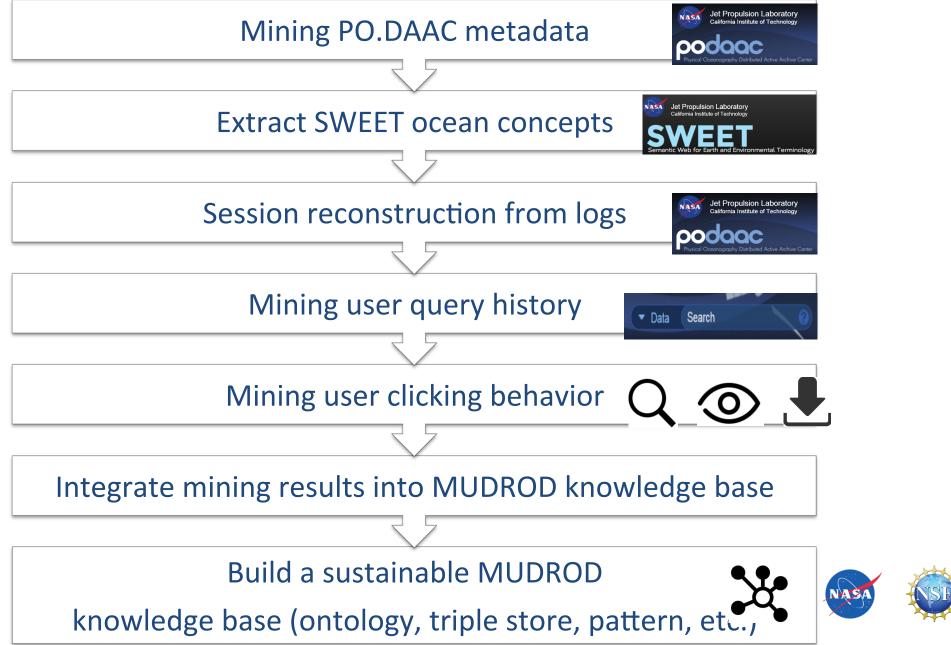
- Keyword-based matching (traditional search engines)
 - User query: ocean wind
 - Final query: ocean AND wind
- Reveal the real intent of user query

 ocean wind = "ocean wind" OR "greco" OR
 "surface wind" OR "mackerel breeze" ...

- UWG Recommendation 2014-07
- ESDSWG Search Relevance

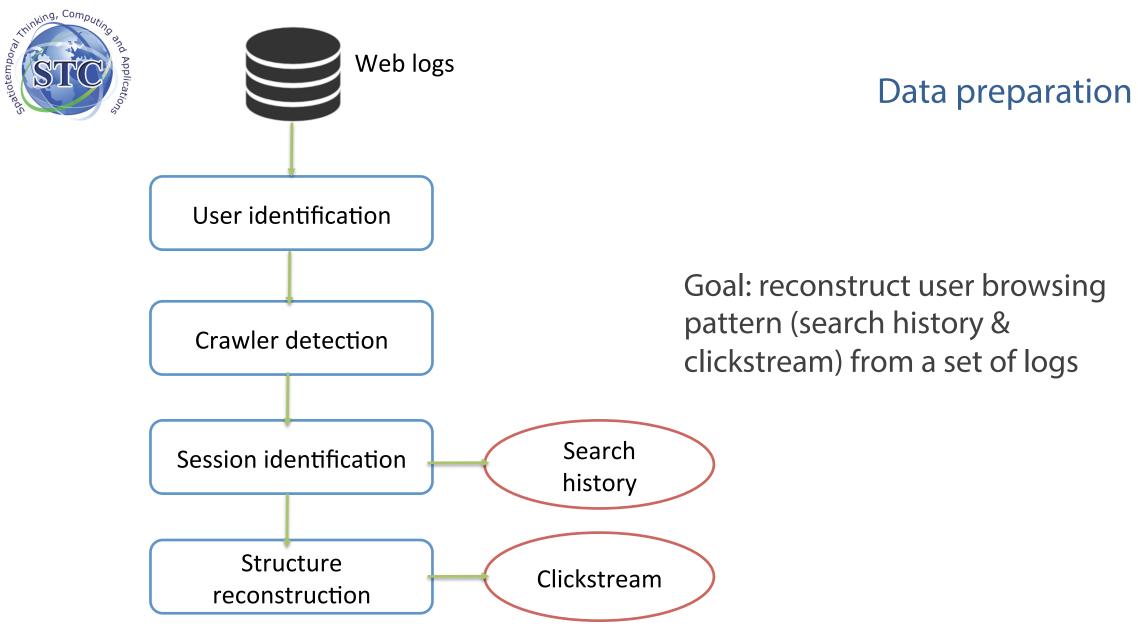


rch	The vocabulary linkage	is discovered through user be	ehavior data, metadata, and SW	EET ontology.		
		search text			٩	
	Ontology se	arch results				



- Objectives
- Analyze web logs to discover user knowledge of the connections between datasets and keywords
- Construct knowledge base by combining semantics and profile analyzer
- Improve data discovery with 1) better ranked results; 2) recommendation; and 3) Ontology navigation

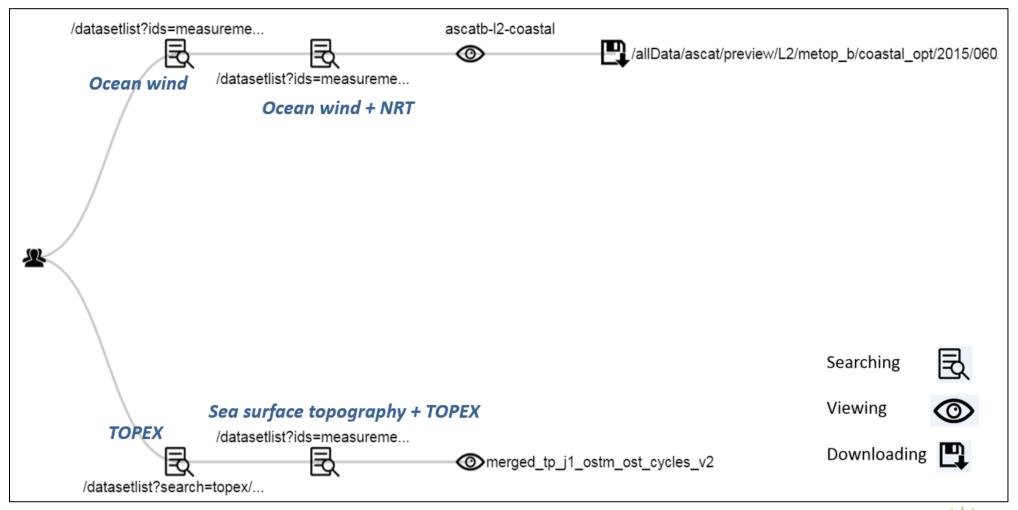
<u>Re</u>search workflow

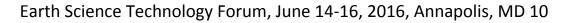


- Log files of 2014 from PO.DAAC
- Access log (HTTP), FTP
- Requests sent from client, recorded by server

68.180.228.99 - - [31/Jan/2015:23:59:13 -0800] "GET /datasetlist/... HTTP/1.1" 200 84779 "/ghrsst/" "Mozilla/5.0 ..."

```
Client IP: 68.180.228.99
Request date/time: [31/Jan/2015:23:59:13 -0800]
Request: "GET /datasetlist/... HTTP/1.1 "
HTTP Code: 200
Bytes returned: 84779
Referrer/previous page: "/ghrsst/"
User agent/browser: "Mozilla/5.0 ...
```


Additional steps include: word normalization, stop words removal, and stemming (NLP techniques)

Reconstructed session structure


```
1. User search history
                                     2. Click stream/through
      "User A": [
         "modis",
                                           "Query": "sst AND Json-1",
         "sst",
                                            "View": "navo-l2p-avhrr19_g",
         "ocean winds",
                                           "Download": "navo-l2p-avhrr19_g"
         "surface wind"
          . . .
```

Data preparation results

Earth Science Technology Forum, June 14-16, 2016, Annapolis, MD 11

Technical approach of discovering linkage

[®] Processed data	Hypothesis/Rationale	Approach
User search history (past searched queries)	The set queries conducted by each individual user are statistically related.	Binary cosine similarity (query- user)
Clickstream (linkage between query, viewing, downloading)	Similar query can result in statistically similar clicking behavior	TF-IDF normalization, SVD, cosine similarity (query – data)
Metadata (DIF, extracted properties)	Similar terms are more likely to be in the same metadata	Latent semantic indexing (term- data)
Existing ontology (SWEET)	"SubClassOf" (Hyponymy) and "equivalentClass" (Synonym)	Path-based similarity (directed)

Integration

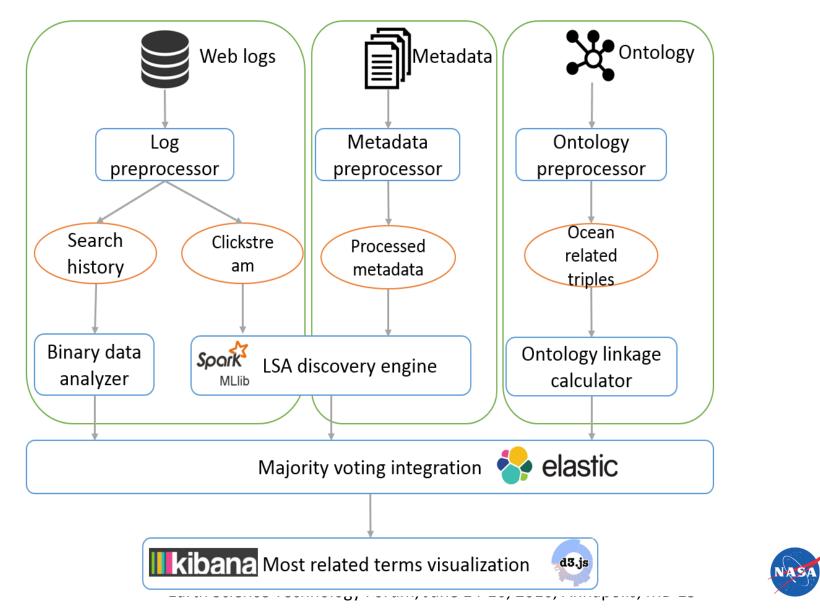
• All four results could be converted to

- Problem:
 - Neither search history nor clicking behavior are perfect, due to the processing uncertainty in data, hypothesis and method
 - Metadata and existing ontology might have unknown terms to search engine end users
 - Better determine the final similarity

Integration

Solution: majority voting rule

$$sim(X,Y) = \frac{\sum_{i} sim_{i} \cdot w_{i}}{\sum_{i} w_{i}} + \left(\sum_{i} w_{i} - \theta\right) \cdot \beta$$
(11)


Where method *i* is the method that has the linkage of (X, Y), w_i is the weight of method *i*, sim_i is the similarity of (X, Y) in method *i*, θ is the threshold that represents the minimum sum of methods weights that makes the linkage a majority, and β is a constant that represents the majority rule change rate.

- Weighted average similarity of different models
- Strong relationships agreed upon by more sides would become stronger

System architecture

Results and evaluation

	Search history	Clickstream	Metadata	SWEET	Integrated list
ocean temperature	sea surface temperature(0.66), sea surface topography(0.56), ocean wind(0.56), aqua(0.49), ocean circulation(0.49)	sea surface temperature(0.94), sst(0.94), group high resolution sea surface temperature dataset(0.89), ghrsst(0.87), caspian sea(0.74)	sst(0.96), ghrsst(0.77), sea surface temperature(0.72), surface temperature(0.63), reynolds(0.58)	None	sst(1.0), sea surface temperature(1.0), ghrsst(1.0), group high resolution sea surface temperature dataset(0.99), reynolds sea surface temperature(0.74)

Sample group	Overall accuracy
Most popular 10 queries	88%
Least popular 10 queries	61%
Randomly selected 10 queries	81%

Earth Science Technology Forum, June 14-16, 2016, Annapolis, MD 16

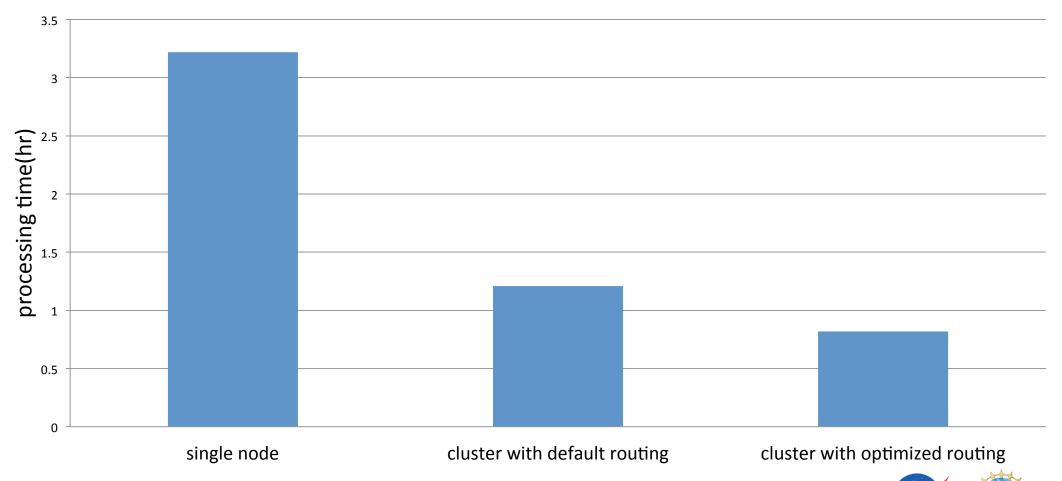
	ntic Search Testbed		
vocabulary linkage	Vocabulary link		ntic Search Testbed
Semantic search	The vocabulary linkage is	Vocabulary linkage	Semantic search
		Semantic search	ocean wind Q
	Ontology search results		Short Name NSCAT_LEVEL_2_V2 Long Time NSCAT Level 2 Ocean Wind Vector Geophysical Data Record Relevance 1.6104715 Keyword wind data,wind,ocean wind,wind speed,vector,vectors,ocean wind vector,ocean wind vector s, nscat, adeos, scatterometer Abstract The NASA Scatterometer (NSCAT) Level 2 ocean wind vectors in 50 km wind vector cell (WVC) swaths contain daily data from ascending and descending passes. Wind vectors are accurate to within 2 m/s (vector speed) and 20 degrees (vector direction). Wind vectors are other missing, ambiguous, or contaminated regions; rain flags and precipitation information are not provided. Data is flagged where measurements are either missing, ambiguous, or contaminated by land/sea ice. Winds are calculated using the NSCAT-2 model function. This is the most up-to-date version, which designates the final phase of calibration, validation and science data processing, which was completed in November of 1998, on behalf of the JPL NSCAT Project; wind vectors are processed using the NSCAT-2 geophysical model function.
			Short Name SEAWINDS_LEVEL_3_AMSR Long Time SeaWinds on ADEOS-II L3 Ocean Wind Vectors w/AMSR corrections (JPL) Relevance 1.6028517 Keyword wind data,wind,ocean wind,wind speed,vector,vectors,ocean wind vector,ocean wind vectors, seawinds,adeos-2,adeos-ii,scatterometer,gridded,amsr Abstract This dataset is designed to compliment the SeaWinds on ADEOS-II Level 3 ocean surface wind vector dataset through the inclusion of AMSR corrections and precipitation rates. Data is provided daily and partitioned according to ascending and descending passes; where multiple passes occur over a given point, data from the most recent pass over-writes the earlier (adjacent) pass. Wind vectors are accurate to within 2 m/s (vector speed) and 20 degrees (vector direction). Rain flags are provided for each wind vector cell to assist in identifying potential rain contamination. This product utilizes JPL's most up-to-date calibration, validation, and science data processing from the QSCAT-1/F13 geophysical model function, adopted in July of 2006.
			Short Name SEAWINDS_LEVEL_3_V2 Long Time SeaWinds on ADEOS-II Level 3 Gridded Ocean Wind Vectors (JPL) Relevance 1.5706728 Keyword wind data,wind,ocean wind,wind speed,vector,vectors,ocean wind vector,ocean wind

http://52.70.209.189:8080/ontology/search.html Earth Science Technology Forum, June 14-16, 2016, Annapolis, MD 17

Cloud computing experiment

Dåta: 32.8GB, 154,969,689 (0.15 billion) lines in total (PODAAC logs of 2014) VMs: 4 CPU cores, 16G memory, Clock Speed 2.4GHz

Experiment	VMs	Cluster node	Cluster mode	Log mining client	Time
1	1	1	Default routing	1	3 hours and 13 minutes
2	4	4	Default routing	4	1 hour and 12 minutes
3	4	4	Optimized routing	4	49 minutes


- Default routing gives an even distribution of documents across the entire cluster using document ID.
- Custom routing assigns documents to a node using value of IP filed, in order to reduce network transportation cost.

Experiment results

Processing time of 3 experiments

Processed data: 32.8GB at 54, 969, 689, 60, 15, billion, Julie es-in, total, Annapolis, MD 19

1st Year Phased Progress

Component testing, deployment, PO.DAAC data, PO.DAAC UWG/Scientists

- 1. Quarter 1: Setup the collaboration and testing environment,
- 2. Quarter 2: Design MUDROD knowledge base, engine and GUI
- 3. Quarter 3: Develop PO.DAAC user search and download profile service
- 4. Quarter 4: Update the semantic search based on the MUDROD system design and conduct alpha development testing.

2nd Year Phased Progress

CMR and other DAACs, PO.DAAC UWG/scientists, Open Source consideration

- 1. Quarter 1: Parallelizing mining using cloud and improving relevance ranking; Integrate MUDROD alpha into PO.DAAC Labs and demonstration to PO.DAAC UWG
- 2. Quarter 2: MUDROD beta testing and enhance knowledge base to include Non-NASA ocean taxonomies, hosted by the NASA CMR
- 3. Quarter 3: Integrate selected CMR metadata and CMR user profile statistics for CMR integration and conduct operation testing
- 4. Quarter 4: demonstrate the developed prototype system at PO.DAAC, CMR, and CLH operations.

Next Quarter/6 Month plan

- -Improve ranking based on the vocabulary linkage and user behavior
- -Build MUDROD ontology
- -Ontology navigation and recommendation
- ESIP Testbed Evaluation
- -Integrate alpha into PO.DAAC Labs
- Open source
- Test and apply as cross-infrastructure capability (e.g., supporting solr)

Test plan with ESIP

- Put projects into the ESIP Testbed
- Prepare installation and user guide
- Contact with Annie Burgess(2-3 times in the following 3 weeks)
 - how evaluators will access MUDROD
 - cyberinfrastructure required for evaluators to access MUDROD
 - current project TRL
 - discuss evaluation objectives and process
- Select evaluators (by ESIP)
- Create test plans (by evaluators and PI)
- Conduct an independent evaluation of the TRL and usability(by evaluators)
 - milestone completion review
 - TRL objective completion review
 - Assess MUDROD using the TRL Evaluation Structure
- Submit final report to ESIP (by evaluators)
- ESIP confirm with PI, then submit to Mike Little
- https://docs.google.com/document/d/14dp3Vkjp5A0vRpcOrWfzxLn3BEzI9Ks7VBw7sUwCsc4/edit?usp=sharing

Component	Current TRL	Target TRL	Description
Semantic search engine	I		
Semantic Search Dispatcher	6	7	
Semantic Similarity Calculator	6	7	
Recommendation	N/A	7	
Ranked Results	6	7	
Ontology Navigation	6	7	
Knowledge base			
Ontology	N/A	7	
Triple Store	N/A	7	
User Access Pattern	6	7	
Vocabulary linkage discovery engi	ne		
Profile analyzer	6	7	
Metadata analyzer	6	7	
Ontology linkage calculator	6	7	
GUI			
Vocabulary linkage visualization tool	6	7	
Semantic search presenter Earth S	æience Technology F	Foru m , June 14-16, 20)16, Annapolis, MD 24

Publications and Presentations

Papers

- Jiang, Y., Y. Li, C. Yang, E. M. Armstrong, T. Huang & D. Moroni (2016) Reconstructing Sessions from Data Discovery and Access Logs to Build a Semantic Knowledge Base for Improving Data Discovery. ISPRS International Journal of Geo-Information, 5, 54. http://www.mdpi.com/2220-9964/5/5/54#stats
- Jiang, Y., Y. Li, C. Yang, K. Liu, E. M. Armstrong, T. Huang & D. Moroni (2016) A Comprehensive Approach to Determining the Linkage Weights among Geospatial Vocabularies - An Example with Oceanographic Data Discovery. (drafted in review)
- Y. Li, Jiang, Y., C. Yang, K. Liu, E. M. Armstrong, T. Huang & D. Moroni (2016) Leverage cloud computing to improve data access log mining. (in progress)

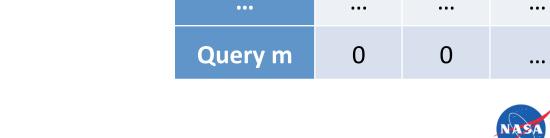
Conference presentations

- Yang C., Jiang Y., LY., Armstrong E., Huang T., and Moroni D., 2015. "Utilizing Advanced IT Technologies to Support MUDROD to Advance Data Discovery and Access", AGU, San Francisco, CA.
- Yang C., Jiang Y., LY., Armstrong E., Huang T., and Moroni D., 2016. "Mining and Utilizing Dataset Relevancy from Oceanographic Dataset (MUDROD) Metadata, Usage Metrics, and User Feedback to Improve Data Discovery and Access", ESIP winter meeting 2016, Washington D.C.
- Jiang Y., Yang C., L Y., Armstrong E., Huang T., and Moroni D., 2016. "A Comprehensive Approach to Determining the Linkage Weights among Geospatial Vocabularies - An Example with Oceanographic Data Discovery", AAG 2016, San Francisco, CA.
- Yang C., Jiang Y., L Y., Armstrong E., Huang T., and Moroni D., 2016. "Mining and Utilizing Dataset Relevancy from Oceanographic Dataset (MUDROD) Metadata, Usage Metrics, and User Feedback to Improve Data Discovery and Access", PO.DAAC UWG, Pasadena, CA.

Acknowledgements

- 1. NASA AIST Program (NNX15AM85G)
- 2. PO.DAAC SWEET Ontology Team (Initially funded by ESTO)
- 3. Hydrology DAAC Rahul Ramachandran (providing the earlier version of NOESIS)
- 4. ESDIS for providing testing logs of CMR
- 5. All team members at JPL and GMU

References


- Abrol, M. & B. Johnson. 2001. Adaptive document ranking method based on user behavior. Google Patents.
- Agichtein, E., E. Brill & S. Dumais. 2006. Improving web search ranking by incorporating user behavior information. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, 19-26. ACM.
- AlJadda, K., M. Korayem, T. Grainger & C. Russell. 2014. Crowdsourced query augmentation through semantic discovery of domain-specific jargon. In *Big Data (Big Data), 2014 IEEE International Conference on*, 808-815. IEEE.
- Arguello, J. (2013) Vector Space Model. Information Retrieval September, 25.
- Berners-Lee, T., J. Hendler & O. Lassila (2001) The semantic web. Scientific american, 284, 28-37.
- Blei, D. M., A. Y. Ng & M. I. Jordan (2003) Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
- Casey, K. 2016. NOAA OneStop Data Discovery and Access Framework Project: Progress, Feedback, and Alignment with the USGEO Common Framework on Earth Observation Data. ESIP Summer Meeting 2016: ESIP.
- Christian, E. J. (2008) GEOSS architecture principles and the GEOSS clearinghouse. Systems Journal, IEEE, 2, 333-337.
- Díaz-Galiano, M. C., M. García-Cumbreras, M. T. Martín-Valdivia, A. Montejo-Ráez & L. Urena-López. 2007. Integrating mesh ontology to improve medical information retrieval. In Advances in multilingual and multimodal information retrieval, 601-606. Springer.
- De Lathauwer, L., B. De Moor & J. Vandewalle (2000) A multilinear singular value decomposition. SIAM journal on Matrix Analysis and Applications, 21, 1253-1278.
- Devarakonda, R., G. Palanisamy, J. M. Green & B. E. Wilson (2011) Data sharing and retrieval using OAI-PMH. Earth Science Informatics, 4, 1-5.
- Dumais, S. T. (2004) Latent semantic analysis. Annual review of information science and technology, 38, 188-230.
- Grossman, D. A. & O. Frieder. 2012. Information retrieval: Algorithms and heuristics. Springer Science & Business Media.
- Gui, Z., C. Yang, J. Xia, K. Liu, C. Xu, J. Li & P. Lostritto (2013) A performance, semantic and service quality-enhanced distributed search engine for improving geospatial resource discovery. *International Journal of Geographical Information Science*, 27, 1109-1132.
- Hua, X.-S., L. Yang, J. Wang, J. Wang, M. Ye, K. Wang, Y. Rui & J. Li. 2013. Clickage: Towards bridging semantic and intent gaps via mining click logs of search engines. In *Proceedings of the 21st ACM international conference on Multimedia*, 243-252. ACM.
- Jiang, Y., M. Sun & C. Yang (2016b) A Generic Framework for Using Multi-Dimensional Earth Observation Data in GIS. *Remote Sensing*, 8, 382.
- Jiang, Y., C. Yang, J. Xia & K. Liu. 2016c. Polar CI Portal: A Cloud-Based Polar Resource Discovery Engine. In *Cloud Computing in Ocean and Atmospheric Sciences*, ed. T. C. Vance, Merati, N., Yang, C., Yuan, M., 163-185. Academic Press.
- Jin, L., Y. Chen, T. Wang, P. Hui & A. V. Vasilakos (2013) Understanding user behavior in online social networks: A survey. *Communications Magazine, IEEE,* 51, 144-150.
- Konstan, J. A., B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon & J. Riedl (1997) GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40, 77-87.

• Create query – user matrix

Thinking, Compu.

tiotemporal

• Calculate binary cosine similarity

$$sim(t,s) = \frac{|t \cap s|}{\sqrt{|t| \cdot |s|}}$$

Earth Science Technology Forum, June 14-16, 2016, Annapolis, MD 29

User search history

Hypothesis: the more frequent two queries co-occur in distinct users' search history, the more similar they are.

> User 1 User 2 User n ... Query 1 1 1 1 ... Similar = Query 2 1 1 1 ... Not **Query 3** 0 0 0 1

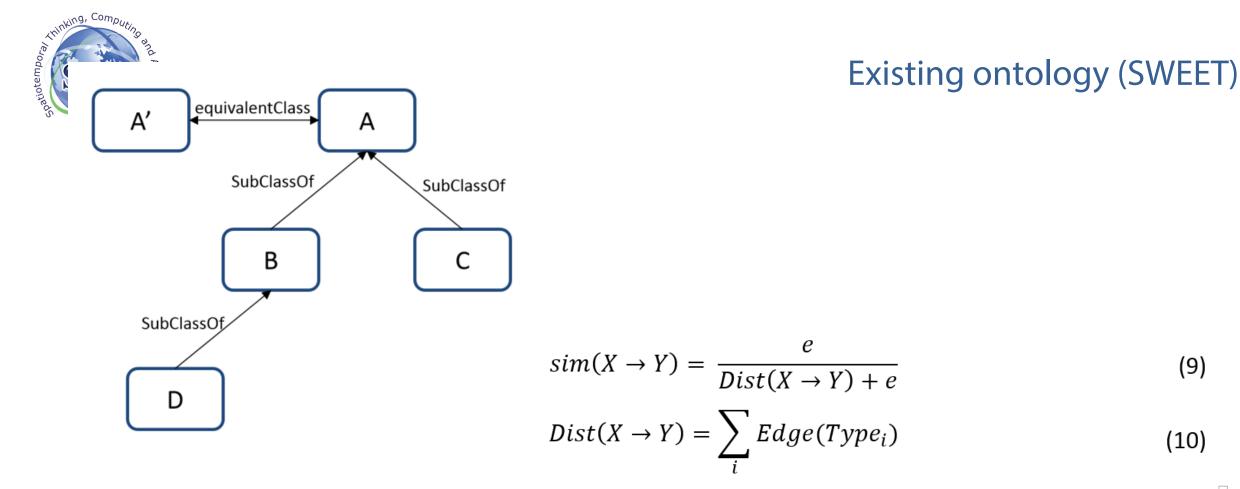
- Hypothesis: if two queries are similar, the data that get viewed and downloaded would be similar
- Filter out rarely searched queries.
- Create query data matrix
- TF-IDF normalization, SVD
- Calculate cosine similarity

$$sim(t,s) = \frac{\vec{t} \cdot \vec{s}}{|\vec{t}| * |\vec{s}|}$$

		Data 1	Data 2	•••	Data n
Similar	Query 1	5	5		1
Not -	Query 2	10	10		0
NOL	Query 3	0	1		9
	•••				
	Query m	3	2		2

Clickstream

Earth Science Technology Forum, June 14-16, 2016, Annapolis, MD 30


 Hypothesis: semantically related terms tend to appear in the same document more frequently.

- Create term data matrix
- TF-IDF normalization, SVD
- Calculate cosine similarity

		Data 1	Data 2	 Data n
Similar	Query 1	5	5	 1
Not -	Query 2	10	10	 0
NOU	Query 3	0	1	 9
	•••			
	Query m	3	2	 2

Metadata

Where e is a constant used to adjust the final similarity, $Dist(X \to Y)$ is the distance from X to Y, and Edge(Type) is a function: if the relation type is "SubClassOf", it returns 1; if the relation type is "equivalentClass", it returns 0; if the relation type does not exist, it returns infinity. The resulting value ranges from 0 meaning no relation, to 1 meaning exactly the same.

(9)

(10)

Query representation

• Query is represented by using dataset as feature:

$$query_{i} = (N_{dataset_{1}}, N_{dataset_{2}}, \dots, N_{dataset_{n}})$$

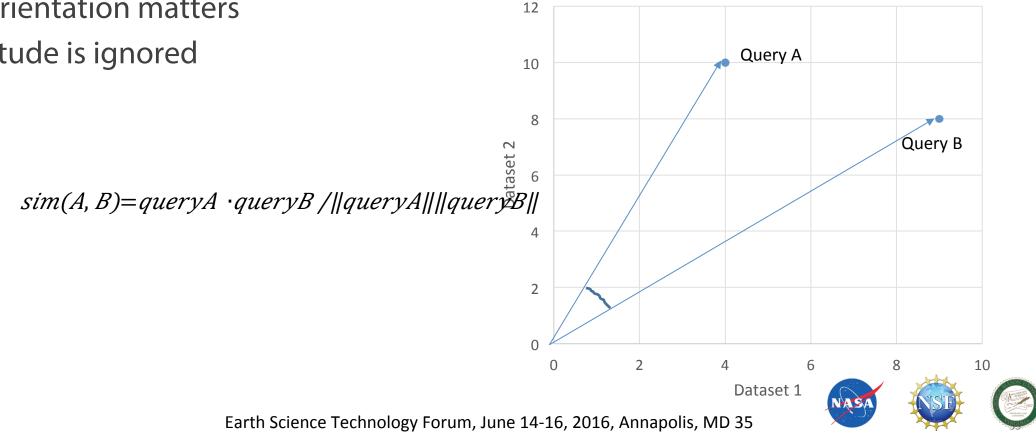
$$(N_{view} + m * N_{download}) (m \ge 1)$$

N\view is the number of times *dataset\1* get viewed after searching *keyword\i N\download* is the number of times *dataset\1* get downloaded after searching *keyword\i* m: download >= view

Normalization factor

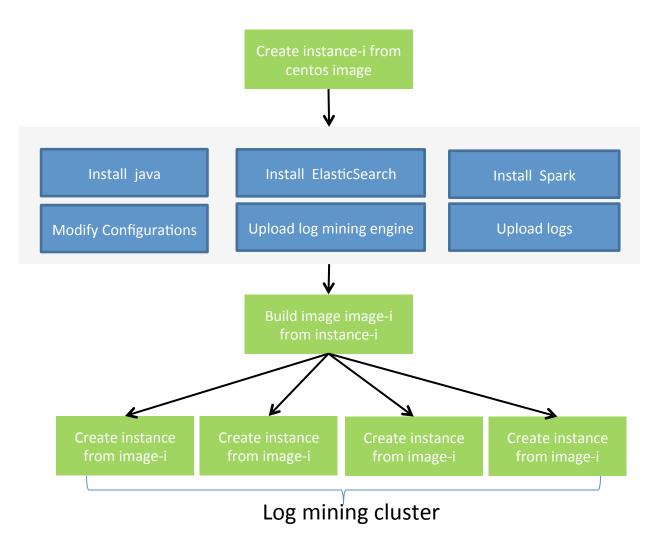
- How often does a dataset get viewed in all the searching behaviors? The more often, the more general.
- Datasets related to many keywords < more-specific datasets

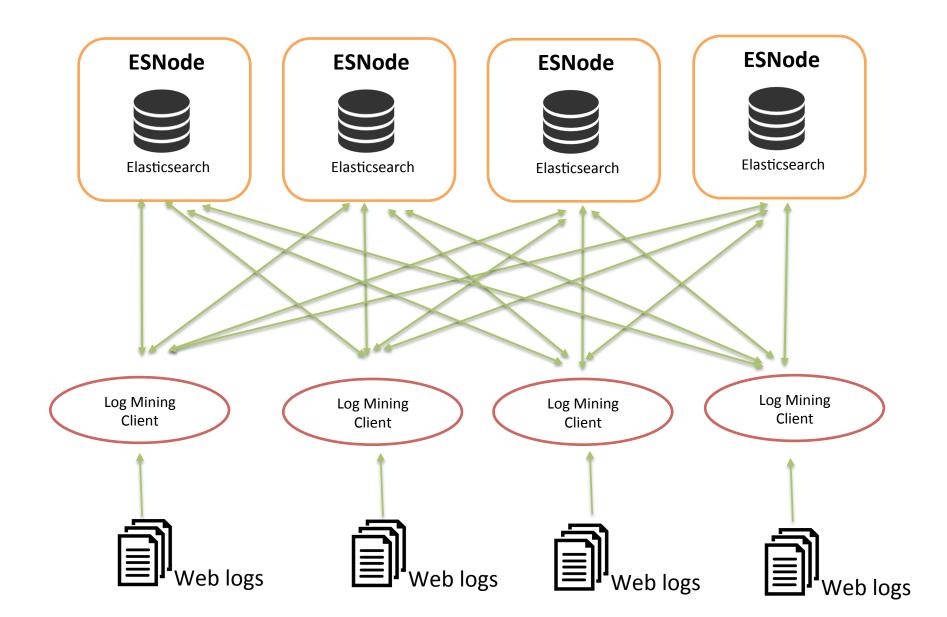
$$idf(d_1) = 1 + \log\left(\frac{\text{numKeyword}}{\text{queryFreq} + 1}\right)$$



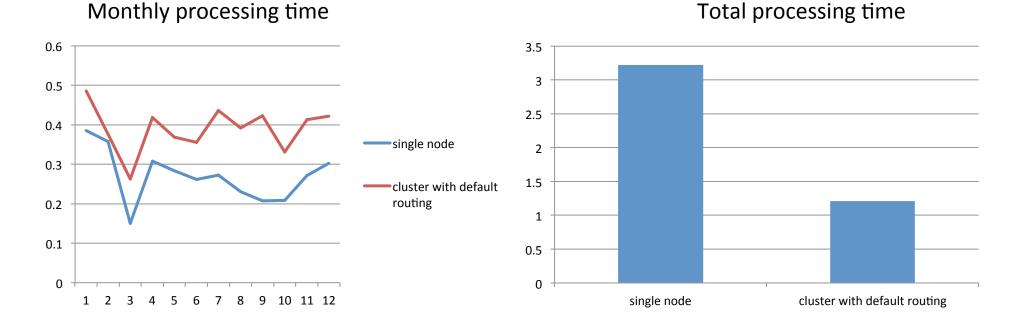
Earth Science Technology Forum, June 14-16, 2016, Annapolis, MD 34

Cosine Similarity

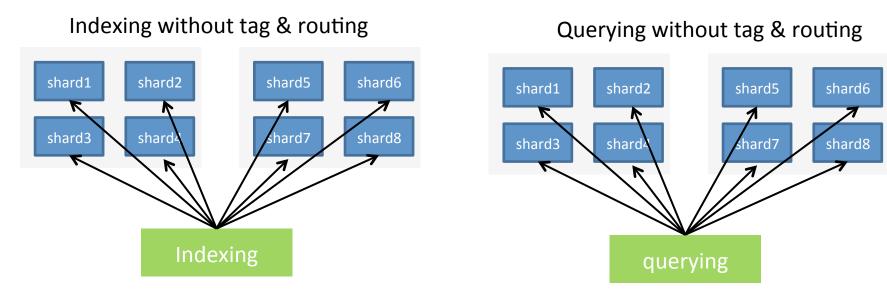

- Widely used in text mining
- Different from Euclidean dist
- Only orientation matters
 - Magnitude is ignored


Experiment1 - one client and one node

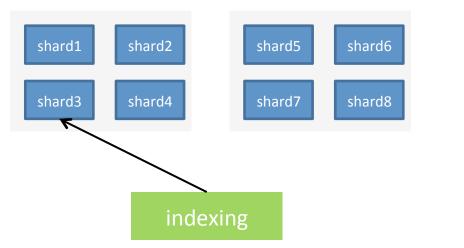
CPU Core	Memory (GB)	Elasticsearch	
4	16	1.7.2	
Month	Processing Tir	ne(S) (One node)	
201401	1387		
201402	1287		
201403	541		
201404	1110		
201405	1020		
201406	943		
201407	983		
201408	830		
201409	745		
201410	751		
201411	977		
201412	1087		
Total	11611(3hours	and 13 minutes)	


Leverage AIST cloud to set up a cluster

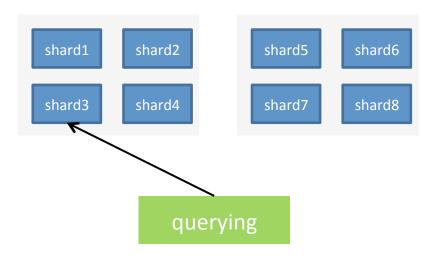
Experiment2-cluster with default routing

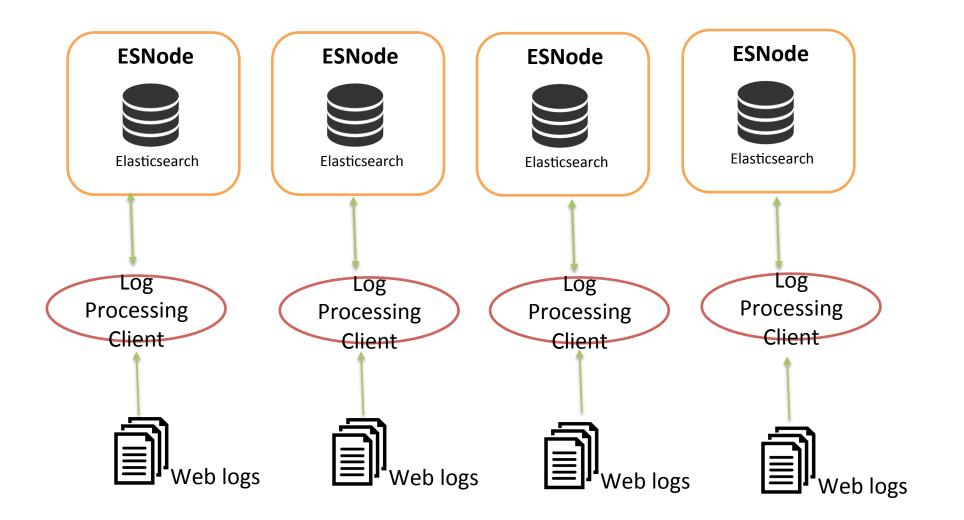


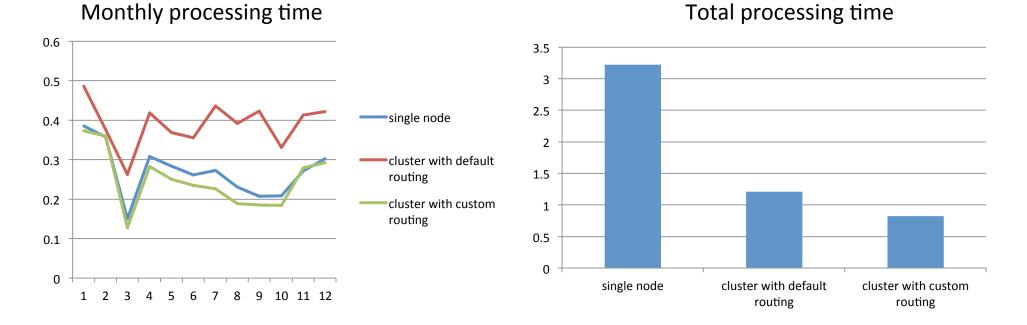
Testing Results



- 1. Due to network transportation cost, the processing time of using cluster is longer than using single node to process each month's log.
- 2. The total processing time of cluster is much shorter than that of one node.


Tag & Routing


Indexing with tag & routing


Querying with tag & routing

Experiment3-cluster with routing

Testing Results

- 1. The monthly processing time of using cluster with custom routing is much shorter than using cluster with default routing.
- 2. The monthly processing time of using cluster with custom routing is equal or shorter than using single node.
- 3. The total processing time of using cluster with custom routing is shortest.

Current ranking score is calculated based on Lucene Practical Scoring Function

 $score(q,d) = coord(q,d) \cdot queryNorm(q) \cdot \sum (tf(t in d) \cdot idf(t)^2 \cdot t.getBoost() \cdot norm(t,d))$

- Factors considered in this formula
 - Term frequency(tf): the more frequent the query is in a certain doc, the more relevant the doc
 - Inverse doc frequency(idf): how often does the term appear in all documents in the collection? The more often, the lower the weight
 - *Field length*: the shorter the field where query appears, the more relevant (e.g. the title has higher weight than abstract)
 - *Query boost*: the importance of each sub-query
 - Coordination factor: the percentage of query terms appear in the doc
- The algorithm we are working on will incorporate
 - Query, time-dependent popularity
 - Release date
 - Etc.

Earth Science Technology Forum, June 14-16, 2016, Annapolis, MD 43

Ranking algorithm

t in q