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Motivation 

 

●  Understanding dynamics of Earth’s ice sheets important for future prediction of 
ice coverage and sea level rise 

●  Extensive past studies have developed a variety of sensing techniques for ice 
sheet properties, e.g. thickness, topography, velocity, mass, accumulation rate,… 

●  Limited capabilities for determining ice sheet internal temperatures at present 
●  Available from small number of bore holes 

●  Internal temperature influences stiffness,  
which influences stress-strain relationship  
and therefore ice deformation and motion 

●  Can ice sheet internal temperatures 
be determined using microwave radiometry? 

●  Can 0.5-2 GHz microwave radiometry be used 
for sensing other cryospheric information? 



Ultra-wideband software defined radiometer (UWBRAD) 

•  UWBRAD=a radiometer operating 0.5 – 2 GHz for internal ice sheet 
temperature sensing

•  Requires operating in unprotected bands, so interference a major concern

•  Address by sampling entire bandwidth ( in 100 MHz channels) and implement 
real-time detection/mitigation/use of unoccupied spectrum

•  Supported under NASA 2013 Instrument Incubator Program 

•  Preparing to deploy  
in Greenland Sept 2016  

•  Retrieve internal ice sheet 
temperatures and  
compare with in-situ  
core sites

Freq (GHz) 0.5-2 , 12 x 100 MHz channels 
Polarization Single (Right-hand circular) 

Observation angle Nadir 
Spatial Resolution 1 km x 1 km (500 m platform altitude) 
Integration time 100 msec 

Ant Gain (dB) /Beamwidth 11 dB 
60� 

Calibration (Internal) Reference load and Noise diode sources 
Calibration (External) Sky and Ocean Measurements 

Noise equiv dT 0.4 K in 100 msec (each 100 MHz channel) 
Interference �
Management 

Full sampling of 100 MHz bandwidth in 16 bits resolution 
each channel; real time “software defined” �

RFI detection and mitigation 
Initial Data Rate 700 Megabytes per second (10% duty cycle) 

Data Rate to Disk <1 Megabyte per second 



UWBRAD Science Goals

•  Ice sheet temperature at 10 m depth,  1 K accuracy
–  10 m temperatures approximate the mean annual temperature, an 

important climate parameter

•  Depth-averaged temperature from 200 m to 4 km (max)  
ice sheet thickness,  1 K accuracy

–  Spatial variations in average temperature can be used as a proxy for 
improving temperature dependent ice-flow models

•  Temperature profile at 100 m depth intervals,  1 K accuracy 
–  Remote sensing measurements of temperature-depth profiles can 

substantially improve ice flow models

•  Measurements all at minimum 10 km resolution
–  Timestamped and geolocated by latitude and longitude
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Objective 

Key Milestones Approach 

UWBRAD: Ultra-Wideband Software-Defined Microwave Radiometer  
for Ice Sheet Subsurface Temperature Sensing 

PI: Joel T. Johnson, Ohio State University 

•  Design, develop, test and validate an ultra-wide band, 0.5-2.0 
GHz software defined microwave radiometer for sensing ice 
sheet internal temperature at depths up to 4 km and address 
key NASA climate variability and change issues 
•  Includes 12 x 100 MHz fully digitized channels for RFI 

detection and mitigation 
•  Includes forward modeling and retrieval studies for 

retrieving ice sheet temperatures and understanding ice 
sheet brightness temperature signatures 

•  Assess adaptation of UWBRAD to air and space platforms  
•  Develop software defined algorithms for real time RFI 

mitigation enabling operation outside protected bands  
•  Conduct ground based and airborne demonstrations 
•  Conduct science demonstration/validation of UWBRAD results 

•  Complete detailed system design  10/14 
•  Complete four channel implementation and test  04/15 
•  Complete antenna scale model fabrication and  04/15 
    test      
•  Complete 12 channel implementation and test         06/16 
•  Complete antenna implementation and test             05/16 
•  Complete laboratory tests of full system  08/16 
•  Conduct airborne experiments on DC-3T  09/16 
    over Greenland 
•  Complete data analysis  04/17 

  

•  Design, construct and demonstrate four channel system 
•  Design, construct, and test scale model of antenna 
•  Expand radiometer to 12 channels and test radiometer 

performance, software defined algorithms, cognitive 
radiometry, and full scale antenna in lab environment 

•  Develop and apply multi-frequency, model based retrieval 
algorithms to determine internal ice sheet temperatures 

•  Conduct flight demonstration to validate technologies and 
science capabilities 

•  Assess science and technical data to develop a plan for 
integration of UWBRAD into other NASA ice 
measurements 

IIP-13-0017 

Co-Is/Partners: K. Jezek, C. Chen, M. Durand, Ohio State 
University; L. Tsang, University of Michigan TRLin = 3    TRLcurrent = 3 

Pure ice penetration depth vs. 
frequency and temperature Antenna spiral 

arm profile 

Near-field antenna pattern 

DC-3T (Basler) 
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UWBRAD System 

o  The radiometer is composed of three subsystems:
§  Front End/Downconversion 

§  Digital Backend

§  Antenna



Front End Design  



Front End 

o  0.5-2 GHz divided into 12 separated channels in 2nd Nyquist of ADC 

 
 
 

Avoiding DME 
equipment 
aboard 
aircraft 
 
Channels 
marked 
with * 
included in 
4 channel 
prototype 

* * * * 



Front End Implementation05.12.16 
 
 
 
 
 
 
 
 
 

 
 
 
	

Temperature Control 
Board 1 for RF Unit 

Temperature Control 
Board 2 for IF Units 

Thermistor feeding 
Board 

 IF Units 
12 Channels 
 

RF Unit 

DAQ1 

DAQ2 

Notch 
Filter 



Front End

•  Based on ‘hybrid’ radiometer design to avoid need for wideband 
isolators

•  Common 0.5-2 GHz RF stage
–  Calibration process considers 

multiple front end states

•  Subsequent IF stage  
uses image reject mixers to  
obtain channels for both upper 
and lower sidebands

•  RF channel definition filters for 
each channel to reduce out-of-band  
RFI impact

 



Back End 

o  Digital Subsystem based around the ATS9625 card from AlazarTech, 
Inc:
- 2 channel, 250 MSPS,16 bit/sample data acquisition card
- Achieves high throughput to host PC
- RFI processing performed on host PC

o   Each board can handle 2 100 MHz channels

o  6 boards used for 12 channels

o  One host PC can accommodate 2 ATS9625 boards
o  Need 3 PC’s to host boards
o  4th PC to control system, handle data, etc.

 



Back End for Greenland Deployment 

o  Four PC system hosting ADC boards
o  Rack mounted system

o  Aircraft approved rack will be used for flight deployment
o  Interface between PC’s to provide for synchronization among 

channels and data sharing
o  Host PC runs control and display software



Software Status

•  Two main functions: Acquire and Process

•  Acquire focuses on interacting with the ADC boards and recording the data to hard disk 
and memory

•  Process focuses on RFI detection and mitigation and extracting brightness temperature 
information from the data

–  Currently calculates first 4 signal moments, signal power, kurtosis, and 1024 point 
spectrogram

–  3 RFI detection algorithms used: pulse detection, cross frequency detection, 
kurtosis detection

•  USB interface from computer to front end for radiometer state control

•  Matlab based real-time display software for system monitoring and data visualization



Output Data Formats 

o  “High rate”: Raw ADC samples (16 bits) in all channels recorded every 10 minutes
o  “Burst” operations, 100 msec of data sampled at 250 MSPS  

(i.e. ~ 50 MB per channel)

o  “Medium rate”: Software processing of data to perform 1024 point FFT, detection, and 
integration in each channel
o  Output resolution is 512 frequencies (~0.25MHz) @ 1 msec
o  Kurtosis of each frequency bin also computed (@100ms),  

as well as fullband kurtosis (@1ms)

o  “Low rate”: Integration over spectrogram (100x1ms, 512 frequencies) to obtain final 
counts, both before and after RFI flagging by fullband kurtosis, fullband pulse, and sub-
band kurtosis detection algorithms

o  All processing performed on host computer in real-time

o  Duty cycle for radiometer measurements currently ranges from ~3%-15% (final goal of 
10%) for 100 ms integration times, depending on whether processing is performed or 
only raw data is collected
o  Still performing calibration analysis to optimize cal cycling



UWBRAD	Antenna	
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Measured	Gain	and	Matching	Performance	

w/Radome Antenna Only 
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Greenland Antenna
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Simulation 
Antarctica Antenna 

Greenland Antenna 
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DOME-C Opportunity
•  Opportunity to deploy at DOME-C obtained through collaboration with PNRA MAISARS 

project 
•  UWBRAD provided measurements potentially useful for Domex cal/val

–  Potentially useful ancillary data (retrieved snow temperature profile) to be used for modelling

•  IFAC team: Marco Brogioni, Fabiano Monti (snow scientist),  
Vito Stanzione (technician, winterover)

•  Instrument deployment and operation supported by IFAC  
team



DOME-C Prototype

•  Four channels instead of 12: 540, 900, 1380, 1740 MHz
•  Radiometer electronics packaged in insulated, temperature controlled enclosure
•  Additional antenna support structure constructed for mounting on DOME-C tower
•  Antenna included thermistor for monitoring temperature
•  Enclosure found to overheat in room temperature environment, but no thermal issues 

when operated outside at Dome-C
•  Required only power and Ethernet  

interface
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UWBRAD	Antenna	on	Antarctica	Dome	C	Tower	

IFAC scientist Dr. Marco Brogioni 



Dome-C Campaign Events

•  11/17: UWBRAD assembly at Dome-C
•  11/19: UWBRAD turned on in lab, first data sent to OSU 11/24
•  11/24-12/15: Work to identify and mitigate self interference
•  12/15: UWBRAD repackaged; greatly reduced self interference
•  12/16-12/20: Sky observations on ground 
•  12/21: UWBRAD deployed on tower in 45 deg position
•  12/26: UWBRAD on tower in 30 deg position
•  12/29: UWBRAD off tower, sky tests with extra  

           attenuation
•  12/31: UWBRAD operations stopped, repackaged for  

           shipment
•  2/4:  UWBRAD data drives received at OSU
•  Prototype return to OSU: May 2016



“Calibrated” TB spectrograms

•  Example spectrogram from 1380 MHz channel for campaign (medium rate data)

•  Evidence of narrow band RFI, some internally generated (but easily removed)

•  Some evidence of 
apparent 
external RFI 

•  Clear differences 
between sky and  
ice sheet observed

•  Real time RFI 
processing parameters 
not well set, but can  
reprocess using  
medium rate  
data

•  3 lower frequency channels 
similar; highest frequency 
channel problematic due to  
reduced gain and higher cable loss

Sky obs 

Sky obs 

Tower 
At 30 deg 
 
Tower at 
45 deg 



Kurtosis and RFI Processing

•  Fullband and sub-band kurtosis show evidence of RFI

•  Narrowband CW type (likely internal) produces kurtosis <3

•  Pulsed type RFI produces kurtosis > 3

•  Evidence of both types

•  Re-applying kurtosis detection to medium rate data in RFI reprocessing

Sub-band Kurtosis, 1380 MHz Full band Kurtosis, 900 MHz 



Prep for Greenland Campaign

•  Contracting Kenn Borek airlines for Basler BT-67 aircraft
•  Campaign scheduled August 29th-Sept 16th, 2016

•  42 flight hours
–  22 for transit
–  20 hours for survey
–  150 knots ground speed

•  Check out flight to northern core sites
•  Core Site flight modified for Aquifer sites
•  Optional sea ice / ice cap flight
•  Optional Dye 3/ western aquifer flight
•  Optional flights also provide weather delay contingency for higher priority 

flights
•  1 circular flight with about 25 km radius about GISP/GRIP



Greenland Flight Paths

•  Yellow/Purple:  core site plan 
modified to include aquifer (7.6 
hrs) 

•  Gold:  Check out flight (4.7 hrs) 
•  Red:  Sea ice and Canadian Ice 

Caps (3.5 hrs) 
•  Green:  Dye3 and coastal  

aquifer (4.3 hrs) 
•  Diamonds:  subsurface aquifer 

locations 
 

 
 



Summary of Planned Greenland Flights



UWBRAD virtual mission

Experiment Overview
v  Estimation framework uses a first guess temp. 

profile parameterized using the Robin model
v  Demonstration using synthetic observations for 

47 points (including Summit and Camp Century) 
along Greenland flight line 

v  Can UWBRAD improve poorly known prior 
parameter estimates?

v  Unknown parameters: Surface temperature, 
geothermal heat flux, vertical density variations

Datasets
v  Surface Temperature and accumulation rate 

from RACMO reanalysis
v  Ice sheet thickness from Operation Ice Bridge
v  Geothermal heat flux from Community Ice Sheet 

Model
v  Mean density profile fit from Summit borehole 

data
v  Density variations fit from Liz Morris’ neutron 

probe data



Estimation results: point 47

Experiment Plan
v  Generate synthetic UWBRAD 

observations with Coherent model
v  Estimate parameters from Markov 

Chain Monte Carlo (MCMC)
Results
v  Estimated surface temperature to 

within 0.5 K
v  Estimated geothermal heatflux to 

within 10%



Forward Models
•  All the retrieval methods under investigation involve ‘tuning’ predictions of a 

forward model to match observations

•  Need robust forward model for this to be successful!

•  UWBRAD studies have investigated and compared
–  Standard incoherent models (DMRT-ML/MEMLS)
–  Coherent model 
–  Both can capture inhomogeneous temperature and density profiles
–  Incoherent models include scattering, but not important at low frequencies
–  Coherent model captures coherent interactions; found potentially to be important at 

lower UWBRAD frequencies
–  Emphasizing use of coherent model in current retrieval analyses

•  Neither model includes effects of surface roughness
–  DOME-C 1.4 GHz model/measurement comparisons suggest roughness may be an 

issue

•  UM team members developing ‘partially coherent’ model to include and 
examine interface roughness contributions



Model Examples 
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Brightness temperature comparison between 
the incoherent and coherent models for different 
correlation lengths of density fluctuation. Cloud 
Model: grey dashed curve; DMRT-ML: grey 
dotted; MEMLS: black-dashed with red markers; 
Coherent: black solid.

-  Model results are different 
for short correlation lengths 
of density fluctuation (less 
than half a wavelength)

-  The coherent model is the 
baseline algorithm and gives 
correct prediction in the 
UWBRAD frequency range.

-  The coherent model takes 
longer time to run due to the 
large number of realizations 
needed.

-  The objective is to improve 
the efficiency of the 
coherent model.

-  Partially coherent model 
gets the same physical 
results but runs much faster. 

Δ=0.040g/ ​cm↑3 ; 
𝛼=30m
𝑀=0.01m/yr; ​𝑇↓𝑠 
=216K
𝐻=3700m; water base



Other Applications
•  For smooth layered media, TB vs. frequency oscillates at rate that depends on layer 

thickness

•  Indicates potential for multi-frequency radiometry in ice thickness sensing  
applications

•  Abililty to resolve finely in frequency a key aspect of system

•  Fourier transform of TB vs. frequency is the temporal correlation function of the 
received noise: also can be used to determine thickness

•  Other potential applications: root zone soil  
moisture, snow layer thickness, 
aquifer/wet zone applications
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Conclusions

•  UWBRAD instrument nearing completion

•  Laboratory calibration testing in process

•  Prepping for September Greenland campaign

•  Initiating studies for other applications and future transition


