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Motivation: Next Gen NASA Earth Science 
Missions
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•  New Instruments required to produce essential data to help scientists answer critical 21st 
century questions

-  Global climate change, air quality, ocean health, ecosystem dynamics, etc…
•  Missions specifying instruments with significantly increased: 

-  Temporal, spatial, and frequency resolutions à to global, continuous observations 
-  Current/near-term data at rates >108 to 1011 bits/second

•  On-board processing ~100-1,000x than previous missions (compression, storage, downlink)
•  Adding new capabilities such as low-latency data products for extreme event warnings

Hybrid computing is a key cross-cutting technology directly 
applicable to missions recommended in the Decadal Survey 
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SpaceCubeX Project

•  Recent publications show hybrid computing architectures 
can be highly efficient in highly constrained SWAP scenarios
–  Also tracks trends in HPC, mobile computing

•  Can we identify a hybrid computing architecture of high 
utility across a wide suite of Earth Science applications?

•  SpaceCubeX Architecture Analysis Framework:
–  Enables selection of the most SWAP efficient processing architecture, with direct impact 

on mission capabilities, cost, and risk.
–  Minimal extensions to integrate new processors, such as the anticipated NASA High 

Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by 
months.

–  Reduces risk due to supply chain disruptions by allowing a user to rapidly compare 
alternative component selections, quantify the impact, and update the processing 
architecture.

–  Leverages a wide suite of high performance embedded computing benchmarks and Earth 
science scenarios to ensure robust architecture characterization.

–  Utilizes a proven inter-task programming model to facilitate benchmark compilation and 
experimentation, while being fully interoperable with commercial compilers.
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SpaceCube Next?

•  Multi-core processors more easily provide:
–  General OS support
–  High-level functions
–  Coarse grained application parallelism

•  Co-processors then provide:
–  Customized acceleration
–  High throughput
–  Fine-grained data parallelism

•  Sparked questions:
–  What devices to use?
–  How to connect the devices?
–  How to program the system?
–  (and many more…)

IF#

Sensor'

Memory'
Mul-.
Core'

FPGA'

IF#IF#

DSP'

IF#

IF#

IF#

Mul$%
Core* IF

#

IF
#

Memory*

IF#

IF
#

IF
#

IF#

FPGA*IF
#

IF
#

IF#

FPGA*IF
#

IF
#

IF#

Sensor*

IF#

IF#

Mul$%
Core* IF

#

IF
#Memory*

IF#

IF
#

IF
#

IF#

Sensor*

IF#

IF#

Sensor'

Memory'
Mul-.
Core'

FPGA'

IF# IF#

DSP'

IF#

IF
#

IF
#

IF
#

IF
#

IF
#

IF
#



5 

Reinvent Hardware Development Process
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•  Search space of hybrid 
combinations too complex 
for existing methods

•  Create a development 
environment which enables 
design space exploration of 
architectures across a range 
of applications

•  Components pulled from a 
database and architecture 
generated

•  Same environment can be 
used as architecture 
increases TRL

•  Performance can be tracked 
across architectures and 
across TRL development
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Simulation Testbed
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Year 1: Development and evaluation of simulation testbed across hybrid architectures 

•  ArchGen: 
–  Creates board models for evaluation in 

simulation/emulation environments
•  Component Database: 

–  Collection of components of interest for 
evaluation

•  Performance Models: 
–  Individual component parameters used by 

simulation environment and report 
generation

•  Simulation Generator: 
–  Builds simulation environment based on 

board model
•  Compiler: 

–  Sets up compilation environment based on 
board model

•  Simulation Environment: 
–  Run-time framework to evaluate benchmark 

applications on hybrid architecture model
•  Report: 

–  Details of system’s metrics based on 
benchmark applications on candidate 
architecture model
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Architecture Generator (ArchGen)

•  Python based script for rapid architecture prototyping
•  Parse Excel spreadsheets for component database and user selections
•  Modular capabilities for future and integration with Emulation Environment
•  Added hooks for GUI front-end for User Selection via TkInter
•  Produces XML-based Board Model file for:

–  Use by Simulation Generator/Compilation & Emulation Framework
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$ ArchGen CompDB.xlsx UserSel.xls HybrdFPGA HybridFPGA_1.xml 
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Simulation Generator (SimGen)

•  Python based script to stitch together hybrid simulation
•  Generate Simulation Environment from board model

–  Interoperability between multi-core processors, FPGAs, DSPs
–  Run-time platform to execute benchmark applications
–  Monitor and collect performance report for post-run analysis

•  Added support for external co-simulator (e.g. DSP/FPGAs)
•  Leveraging Imperas Open Virtual Platform Platform APIs and Libraries
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Simulation Generation create platform executables for CPUs and FPGAs. 
DSP simulator already incorporates DSP simulator platform executable. 

SimGen 

DSP Simulator 
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Accel. 
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File 

SpaceCubeX’s Accelerator Peripheral Simulation Engine

•  Connects processor simulator with FPGAs and DSPs co-simulation environments
•  Motivated by limited DSP simulation SystemC & TLM integration support
•  Recognized need for similar functionality with future Emulation Environment
•  Accelerator peripheral is transaction-based

–  Supports multiple transactions to processor’s memory
–  Working on adding more fine-grain delays

§  Accelerator Delay – Time for accelerator to perform computation
§  Interface Delay – Time for accelerator to transfer data to memory/CPU

•  Processor issues commands / checks status via Bus transactions
•  Integrates with Redsharc FPGA simulations and DSP TI simulator

9	
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Accelerator’s Control 
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Memory updates with accelerator results Input 
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Accelerator Peripheral Interprets Transactions 
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Simulation Environment

FPGA Simulation
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Simulation Environment Run-Time Architecture

•  Simulation environment stack running on Host PC
•  SpaceCubeX’s Hybrid architectures are virtual system
•  Able to provide support for bare metal and OS support in system
•  Benchmarks using compilation flow can run in instruction accurate 

simulation and provide conventional debugging techniques
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SpaceCubeX: Simulator Performance Evaluation

Dhrystone	Simulator	Performance	Evalua7on	Comparison	
Runs	 Clock	Cycles/Instruc7ons	 Time	(s)	 DMIPS	 Difference	

Hardware	PlaLorm	 20000	 23651950	 0.2365	 48.12727607	 	-	

SpaceCubeX	Simulator	 20000	 7980020	 0.2418	 47.07260082	 2.22%	

Hardware	PlaLorm	 200000	 249200120	 2.4920	 45.67830574	 	-	

SpaceCubeX	Simulator	 200000	 80000020	 2.4242	 46.95502526	 2.76%	

Whetstone	Simulator	Performance	Evalua7on	Comparison	

Clock	Cycles/Instruc7ons	 Time	(s)	 Difference	

Hardware	PlaLorm	 13334671	 0.1333			

SpaceCubeX	Simulator	 4780862	 0.1449	 8.29%	

•  Microbenchmarks used to evaluate run-time performance
–  Hardware platform performance based on real SpaceCube 2.0 system 

(Xilinx ML510 development board)
–  SpaceCubeX Simulator generated SpaceCube 2.0 simulation platform

•  Performance differences within simulator tolerance
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Architecture Prototypes

•  Architectures selected for initial ‘seed’ to begin trade-space 
exploration
–  Further permutation later in effort

•  Baseline: SpaceCube 2.0 Architecture:
–  Existing Flight system - One RadHard Aeroflex FPGA and two Virtex5 

FPGAs

•  Hybrid DSP Architecture:
–  Quad ARM A53 with ClearSpeed CSX700 (simulated TI C6747 DSP 

Zynq SoC Architecture Hybrid FPGA Architecture Hybrid DSP Architecture 

•  ARM Cortex-A9 (embedded)
–  Dual ARMv7 800-1000 MHz
–  64KB L1 Cache / 512 MB L2 

Cache
–  Hard floating point unit and NEON 

data engine
•  Xiliinx Zynq 7045 FPGA Fabric

–  Logic Cells: 350,000
–  Block RAM: 17,440 Kb
–  DSP slices: 900
–  GTX (12.5 Gb/s): 16

•  Processor
–  Dual ARM Cortex-A53 processors

§  Quad ARMv8-A 32b/64b Core 1.3 
GHz

§  32KB I-Cache / 32KB D-Cache
§  1 MB L2 Cache

–  ARM Cortex-R5
§  ARMv7R 1.4 GHz

•  Xilinx Virtex 7 FPGA (XC7VX485T)
–  Logic Cells: 485,760
–  Block RAM: 37,080 Kb
–  DSP slices: 2,800
–  GTX (12.5 Gb/s): 56

•  Processor: ARM Cortex-A53
–  Quad ARMv8-A 32b/64b Core 1.3 

GHz
–  32KB I-Cache / 32KB D-Cache
–  1 MB L2 Cache

•  ClearSpeed CSX700 / BAE 
RADSPEED 

–  TI C6747 DSP stand in
–  250 MHz core clock frequency
–  2 SIMD Cores
–  96 processing elements / core
–  8K L1 instruction cache / 4K L1 

data cache
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Application Benchmark Suite

Benchmark Description 
Micro Benchmarks Kernels to benchmark architecture subcomponents and measure system 

viability. 

NAS Parallel Benchmarks
NASA generated set of programs designed to help evaluate the 
performance of parallel supercomputers, derived from computational fluid 
dynamics (CFD) applications and consist of five kernels and three pseudo-
applications

Packet Routing 2 kernels: Packet generation and transmission & Packet reception and 
verification

ATCORR Atmospheric correction algorithm commonly used in Hyperspectral and 
other sensing applications

Hyperspectral Classifiers Two classification kernels: Sulfur, Thermal

Hyperspectral Compression Lossless Compression algorithm tuned for hyperspectral data

Image segmentation and 
segment analysis

Autonomous spacecraft tasking, geological feature identification, 
analysis, and data handling. (HPFEC-3)

Image Classification Common image processing kernels including feature extraction, shape 
analysis, and surface analysis. (HPFEC-4)



15 

Application Mapping Process

•  Existing applications
–  Port code, recompile
–  Existing FPGA extremely helpful

•  New Applications (HPFEC-3, HPFEC-4)
–  Utilize REDSHARC to encapsulate kernels 

using common interface API to facilitate 
migrating kernels between 
heterogeneous elements (CPU, DSP, 
FPGA)

•  REDSHARC: Reconfigurable 
Datastream Software / Hardware 
ARChitecture
–  REDSHARC infrastructure utilized to 

standardize simulation framework
–  Application developers target API and 

get infrastructure for ‘free’
•  Optimization

–  Reasonable effort level approach taken
–  Goal to identify best board level 

architecture, not a mission level 
application optimization project
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processing elements 

while(1) { 
  // Pop element off of Stream 
  temp = incoming.streamPop(); 
  //Increment by 1 
  temp++; 
  output.streamPush(temp); 
} 

REDSHARC Uniform APIs 

Hardware API Instantiation 

Software API Instantiation 
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NAS Parallel Benchmarks: Results
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Multi-core performance scales with the number of cores. 
Architectures enabling high performance (cluster in space) class computing capabilities. 
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SpaceCubeX: Throughput Comparison
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SpaceCubeX: Energy Consumption Comparison
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Hybrid DSP and FPGA Architectures provide significant reduction in power usage 
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Benchmarking Summary

Space Cube 2.0 Zynq Hybrid
Type Name 1 PPC 2 PPCs 1 ARM A9 2 ARM A9s1 ARM A53 4 ARM 

A53s
4 A53s
+ FPGA

4 A53s
+ DSP

Diagnostic Memory 
Test Y Y Y Y Y Y N/A N/A

Diagnostic Interfaces 
Test Y Y Y Y Y Y N/A N/A

Micro-
Benchmarks

Dhrystone 
/ 
Whetstone 
/ Linpack

Y N/A Y N/A Y N/A N/A N/A

Micro-
Benchmark

NAS 
Parallel 
Benchmark
s

Y N/A Y Y Y Y N/A N/A

Application
GSFC 
Packet 
Generation

Y Y Y Y Y Y N/A N/A

Application GSFC 
Packet 
Validation

Y Y Y Y Y Y N/A N/A

Application SAR N N
(Single Core) Y N

(Single Core) Y N
(Single Core) N/A N/A

Application ATCORR Y N
(Single Core) Y N

(Single Core) Y N
(Single Core) Y N

Application SVM Sulfur Y N
(Single Core) Y N

(Single Core) Y N
(Single Core) Y N

Application Hyper. 
Thermal Y N

(Single Core) Y N
(Single Core) Y N

(Single Core) Y Y

Application
Hyper. 
Compressio
n

Y Y Y Y Y Y Y Y

Benchmark HPFEC-3 N N Y Y Y Y Y Y
Benchmark HPFEC-4 N N Y Y Y Y N N

•  Ran over 200 benchmark application experiments on 8 different permuted 
architectures for processors, FPGAs, and DSPs

•  General observations
–  ARM 53 significantly outperforms A9
–  Multi-core architectures provide fast, scalable approach
–  Hybrid architectures provide best performance / power
–  Hybrid DSP architecture lagging
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Summary

•  Achieved first spiral of 
system capable of 
performing board level 
heterogeneous design 
space evaluation

•  System capable of 
supporting additional earth 
sensing applications

•  Year 2
–  Additional architecture 

permutations
–  Migrating from Simulation to 

Emulation
–  Assessing additional application
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Potential Future Extensions: HPC

•  Extensions to address High 
Performance Computation
–  GPU-based accelerators
–  Tightly coupled FPGAs
§  Intel HARP

–  More than Moore architectures
§  Micron Hybrid Memory cube

–  ISI has all three architectures in 
house

•  Update framework to 
incorporate new 
architectures

•  Application benchmarks 
representative of NASA HPC

Intel’s HARP Data center Architecture 

Nvidia Graphic Processor Architecture 

Micron Hybrid Memory Cube 
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Increase NASA Community Engagement

•  SpaceCube-X Simulation 
Infrastructure mature enough 
to support broader community

•  Example: Radio Frequency 
Interference Detection and Mitigation 
Applications
–  JPL Group (Livesey, Kocz, Misra) 

approached SpaceCubeX team after 
ESTF2015

–  New approach discriminates between 
RFI and natural thermal emissions 
signals in L and C bands

AM/FM 

ADC interleave 

TV channels 

Interested in how your application performs? Come talk to us! 
Matthew French mfrench@isi.edu 
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QUESTIONS?

23 
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REconfigurable Data-stream Hardware/Software ARChitecture:
•  Provides rapid construction of System-on-Chip platforms
•  Enables design space exploration of heterogeneous resources

–  Seamless HW/SW task migration supports spiral development
•  Combines situational awareness with high performance processing

–  Dynamic resource management and performance tuning
•  System infrastructure (network/interfaces) pre-designed and verified

–  Focus shifts to design and verification of hardware accelerator cores
•  SpaceCubeX leverages Redsharc for rapid IP integration of accelerator 

peripherals into Hybrid FPGA Simulation Platform
–  JPL: Edge Detection & Image Convolution Kernels
–  ISI: Hyperspectral Image Compression, Thermal & Sulfur Classification Kernels

FPGA Simulation

Redsharc Philosophy: Interoperate and leverage current and emerging devices, tools, and technology 

Diagram of Redsharc System  
Components on an FPGA 

Redsharc’s Hardware Kernel Interface (HWKI) Redsharc’s Build Infrastructure 
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DSP Simulation

•  Limited availability of DSP simulation 
environments

•  Selected TI’s Code Composer Studio (CCS)
–  Support for multiple DSPs
–  Instruction/cycle-accurate simulation
–  Scriptable access to running simulator and extracting 

results
–  Eclipse-based development environment

§  Optimizing C compiler with optimization feedback •  SpaceCubeX preliminary 
evaluation on TI’s C6747 DSP:
–  Low power – ½W @ 300 MHz
–  Built-in floating point support - 4 

SP adds and 2 SP multiplies/cycle
§  Also supports 4 16 bit x 16 bit 

integer multiply/adds per cycle
•  Evaluation framework supports 

selection of different TI DSPs 
for hybrid platform analysis
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Accelerator Peripheral: Multi-Simulator Build Process

•  Added support to compile, run, and collect co-simulator results
1.  Compile accelerator source code, test bench, and test vectors using 

standard tools (e.g. Synopsys VCS, TI’s CCS)
2.  Run accelerator and collect output results (data and delays)
3.  Plug results into peripheral memory files
4.  Compile application (independent of co-simulator results/data)
5.  Run applications in simulator accessing memory files

•  Peripheral can be integrated into different platform evaluation 
systems
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Simulation

Input 
Test Vector Input 

Test Vector Input 
Test Vector 

Test 
Bench 
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Source 

Mem. 
Output File Mem. 

Output File Data 
Output File 

Accelerator
Peripheral
Simulation

Engine
Compilation

FPGA/DSP
Compilation

Periph.  
Source 

Platform
Evaluation

Application
Compilation

App.  
Source 

Results 

1

2 3

4 5


