

SpaceCubeX: Hybrid Multi-core CPU / FPGA / DSP Flight Architecture

Matthew French, Andrew Schmidt, Gabe Weisz – USC / ISI Tom Flatley, Gary Crum, Jonathan Bobblit – NASA GSFC Carlos Villalpando, Robert Bocchino – NASA JPL June 14th, 2016

Motivation: Next Gen NASA Earth Science Missions

- New Instruments required to produce essential data to help scientists answer critical 21st century questions
 - Global climate change, air quality, ocean health, ecosystem dynamics, etc...
- Missions specifying instruments with significantly increased:
 - Temporal, spatial, and frequency resolutions \rightarrow to global, continuous observations
 - Current/near-term data at rates >10⁸ to 10¹¹ bits/second
- On-board processing ~100-1,000x than previous missions (compression, storage, downlink)
- Adding new capabilities such as low-latency data products for extreme event warnings

Hybrid computing is a key cross-cutting technology directly applicable to missions recommended in the Decadal Survey

- Recent publications show hybrid computing architectures can be highly efficient in highly constrained SWAP scenarios
 - Also tracks trends in HPC, mobile computing
- Can we identify a hybrid computing architecture of high utility across a wide suite of Earth Science applications?

- SpaceCubeX Architecture Analysis Framework:
 - Enables selection of the most SWAP efficient processing architecture, with direct impact on mission capabilities, cost, and risk.
 - Minimal extensions to integrate new processors, such as the anticipated NASA High Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by months.
 - Reduces risk due to supply chain disruptions by allowing a user to rapidly compare alternative component selections, quantify the impact, and update the processing architecture.
 - Leverages a wide suite of high performance embedded computing benchmarks and Earth science scenarios to ensure robust architecture characterization.
 - Utilizes a proven inter-task programming model to facilitate benchmark compilation and experimentation, while being fully interoperable with commercial compilers.

- Multi-core processors more easily provide:
 - General OS support
 - High-level functions
 - Coarse grained application parallelism

Co-processors then provide:

- Customized acceleration
- High throughput
- Fine-grained data parallelism

• Sparked questions:

- What devices to use?
- How to connect the devices?
- How to program the system?
- (and many more...)

- Search space of hybrid combinations too complex for existing methods
- Create a development environment which enables design space exploration of architectures across a range of applications
- Components pulled from a database and architecture generated
- Same environment can be used as architecture increases TRL
- Performance can be tracked across architectures and across TRL development

SpaceCubeX Heterogeneous Hardware Development:

Simulation Testbed

• ArchGen:

- Creates board models for evaluation in simulation/emulation environments
- Component Database:
 - Collection of components of interest for evaluation
- Performance Models:
 - Individual component parameters used by simulation environment and report generation
- Simulation Generator:
 - Builds simulation environment based on board model
- Compiler:
 - Sets up compilation environment based on board model
- Simulation Environment:
 - Run-time framework to evaluate benchmark applications on hybrid architecture model
- Report:
 - Details of system's metrics based on benchmark applications on candidate architecture model

Year 1: Development and evaluation of simulation testbed across hybrid architectures

- Python based script for rapid architecture prototyping
- Parse Excel spreadsheets for component database and user selections
- Modular capabilities for future and integration with Emulation Environment

MySQL

🟓 python

- Added hooks for GUI front-end for User Selection via TkInter
- Produces XML-based Board Model file for:
 - Use by Simulation Generator/Compilation & Emulation Framework

- Python based script to stitch together hybrid simulation
- Generate Simulation Environment from board model
 - Interoperability between multi-core processors, FPGAs, DSPs
 - Run-time platform to execute benchmark applications
 - Monitor and collect performance report for post-run analysis
- Added support for external co-simulator (e.g. DSP/FPGAs)
- Leveraging Imperas Open Virtual Platform Platform APIs and Libraries

Simulation Generation create platform executables for CPUs and FPGAs. DSP simulator already incorporates DSP simulator platform executable.

Earth Science Tec

- Connects processor simulator with FPGAs and DSPs co-simulation environments
- Motivated by limited DSP simulation SystemC & TLM integration support
- Recognized need for similar functionality with future Emulation Environment
- Accelerator peripheral is transaction-based
 - Supports multiple transactions to processor's memory
 - Working on adding more fine-grain delays
 - Accelerator Delay Time for accelerator to perform computation
 - Interface Delay Time for accelerator to transfer data to memory/CPU
- Processor issues commands / checks status via Bus transactions
- Integrates with Redsharc FPGA simulations and DSP TI simulator

Simulation Environment

- Simulation environment stack running on Host PC
- SpaceCubeX's Hybrid architectures are virtual system
- Able to provide support for bare metal and OS support in system
- Benchmarks using compilation flow can run in instruction accurate simulation and provide conventional debugging techniques

- Microbenchmarks used to evaluate run-time performance
 - Hardware platform performance based on real SpaceCube 2.0 system (Xilinx ML510 development board)
 - SpaceCubeX Simulator generated SpaceCube 2.0 simulation platform
- Performance differences within simulator tolerance

	Dhrystone Simulator Performance Evaluation Comparison						
	Runs	Clock Cycles/Instructions	Time (s)	DMIPS	Difference		
Hardware Platform	20000	23651950	0.2365	48.12727607	-		
SpaceCubeX Simulator	20000	7980020	0.2418	47.07260082	2.22%		
Hardware Platform	200000	249200120	2.4920	45.67830574	-		
SpaceCubeX Simulator	200000	8000020	2.4242	46.95502526	2.76%		

	Whetstone Simulator Performance Evaluation Comparison				
	Clock Cycles/Instructions	Time (s)	Difference		
Hardware Platform	13334671	0.1333			
SpaceCubeX Simulator	4780862	0.1449	8.29%		

- Architectures selected for initial 'seed' to begin trade-space exploration
 - Further permutation later in effort
- Baseline: SpaceCube 2.0 Architecture:
 - Existing Flight system One RadHard Aeroflex FPGA and two Virtex5

Application Benchmark Suite

Benchmark	Description
Micro Benchmarks	Kernels to benchmark architecture subcomponents and measure system viability.
NAS Parallel Benchmarks	NASA generated set of programs designed to help evaluate the performance of parallel supercomputers, derived from computational fluid dynamics (CFD) applications and consist of five kernels and three pseudo-applications
Packet Routing	2 kernels: Packet generation and transmission & Packet reception and verification
ATCORR	Atmospheric correction algorithm commonly used in Hyperspectral and other sensing applications
Hyperspectral Classifiers	Two classification kernels: Sulfur, Thermal
Hyperspectral Compression	Lossless Compression algorithm tuned for hyperspectral data
Image segmentation and segment analysis	Autonomous spacecraft tasking, geological feature identification, analysis, and data handling. (HPFEC-3)

Image Classification

Common image processing kernels including feature extraction, shape

Application Mapping Process

- Existing applications
 - Port code, recompile
 - Existing FPGA extremely helpful
- New Applications (HPFEC-3, HPFEC-4)
 - Utilize REDSHARC to encapsulate kernels using common interface API to facilitate migrating kernels between heterogeneous elements (CPU, DSP, FPGA)
- REDSHARC: Reconfigurable Datastream Software / Hardware ARChitecture
 - REDSHARC infrastructure utilized to standardize simulation framework
 - Application developers target API and get infrastructure for 'free'
- Optimization
 - Reasonable effort level approach taken
 - Goal to identify best board level architecture, not a mission level

REDSHARC Uniform APIs

```
while(1) {
    // Pop element off of Stream
    temp = incoming.streamPop();
    //Increment by 1
    temp++;
    output.streamPush(temp);
}
```

Software API Instantiation

Hardware API Instantiation

NAS Parallel Benchmarks: Results

Multi-core performance scales with the number of cores. Architectures enabling high performance (cluster in space) class computing capabilities.

SpaceCubeX: Throughput Comparison

Hybrid DSP and FPGA Architectures provides orders of magnitude higher performance

Hybrid DSP and FPGA Architectures provide significant reduction in power usage

- Ran over 200 benchmark application experiments on 8 different permuted architectures for processors, FPGAs, and DSPs
- General observations
 - ARM 53 significantly outperforms A9
 - Multi-core architectures provide fast, scalable approach
 - Hybrid architectures provide best performance / power
 - Hybrid DSP architecture lagging

		Space Cube 2.0			'nq	Hybrid			
Туре	Name	1 PPC	2 PPCs	1 ARM A9	2 ARM A9s	1 ARM A53	4 ARM A53s	4 A53s + FPG <u>A</u>	4 A53s + DSP
Diagnostic	Memory Test	Y	Y	Y	Y	Y	Y	N/A	N/A
Diagnostic	Interfaces Test	Y	Y	Y	Y	Y	Y	N/A	N/A
Micro- Benchmarks	Dhrystone / Whetstone / Linpack	Y	N/A	Y	N/A	Y	N/A	N/A	N/A
Micro- Benchmark	NAS Parallel Benchmark s	Y	N/A	Y	Y	Y	Y	N/A	N/A
Application	GSFC Packet Generation	Y	Y	Y	Y	Y	Y	N/A	N/A
Application	GSFC Packet Validation	Y	Y	Y	Y	Y	Y	N/A	N/A
Application	SAR	Ν	N (Single Core)	Y	N (Single Core)	Y	N (Single Core)	N/A	N/A
Application	ATCORR	Y	N (Single Core)	Y	N (Single Core)	Y	N (Single Core)	Y	Ν
Application	SVM Sulfur	Y	N (Single Core)	Y	N (Single Core)	Y	N (Single Core)	Y	Ν
Application	Hyper. Thermal	Y	N (Single Core)	Y	N (Single Core)	Y	N (Single Core)	Y	Y
Application	Hyper. Compressio n	Y	Y	Y	Y	Y	Y	Y	Y
Benchmark	HPFEC-3	Ν	Ν	Y	Y	Y	Y	Y	Y

- Achieved first spiral of system capable of performing board level heterogeneous design space evaluation
- System capable of supporting additional earth sensing applications
- Year 2
 - Additional architecture permutations
 - Migrating from Simulation to Emulation
 - Assessing additional application

Potential Future Extensions: HPC

- Extensions to address High Performance Computation
 - GPU-based accelerators
 - Tightly coupled FPGAs
 - Intel HARP
 - More than Moore architectures
 - Micron Hybrid Memory cube
 - ISI has all three architectures in house
- Update framework to incorporate new architectures
- Application benchmarks representative of NASA HPC

Nvidia Graphic Processor Architecture

- SpaceCube-X Simulation Infrastructure mature enough to support broader community
- Example: Radio Frequency Interference Detection and Mitigation Applications
 - JPL Group (Livesey, Kocz, Misra) approached SpaceCubeX team after ESTF2015
 - New approach discriminates between RFI and natural thermal emissions signals in L and C bands

128 channel kurtosis spectrogram

300 400 500 600

Frequency (MHz)

Interested in how your application performs? Come talk to us! Matthew French mfrench@isi.edu

Time (ms)

100

200

QUESTIONS?

FPGA Simulation

REconfigurable Data-stream Hardware/Software ARChitecture:

- Provides rapid construction of System-on-Chip platforms
- Enables design space exploration of heterogeneous resources
 - Seamless HW/SW task migration supports spiral development
- Combines situational awareness with high performance processing
 - Dynamic resource management and performance tuning
- System infrastructure (network/interfaces) pre-designed and verified
 - Focus shifts to design and verification of hardware accelerator cores
- SpaceCubeX leverages Redsharc for rapid IP integration of accelerator peripherals into Hybrid FPGA Simulation Platform
 - JPL: Edge Detection & Image Convolution Kernels
 - ISI: Hyperspectral Image Compression, Thermal & Sulfur Classification Kernels

Redsharc's Build Infrastructure

Diagram of Redsharc System Components on an FPGA

Redsharc's Hardware Kernel Interface (HWKI)

Redsharc Philosophy: Interoperate and leverage current and emerging devices, tools, and technology

DSP Simulation

- Limited availability of DSP simulation environments
- Selected TI's Code Composer Studio (CCS)
 - Support for multiple DSPs
 - Instruction/cycle-accurate simulation
 - Scriptable access to running simulator and extracting results
- Eclipse-based development environment Space in based of the primit optimization of TI's C6747 DSP:
 - Low power ½W @ 300 MHz
 - Built-in floating point support 4 SP adds and 2 SP multiplies/cycle
 - Also supports 4 16 bit x 16 bit integer multiply/adds per cycle
- Evaluation framework supports selection of different TI DSPs for hybrid platform analysis

- Added support to compile, run, and collect co-simulator results
 - 1. Compile accelerator source code, test bench, and test vectors using standard tools (e.g. Synopsys VCS, TI's CCS)
 - 2. Run accelerator and collect output results (data and delays)
 - 3. Plug results into peripheral memory files
 - 4. Compile application (independent of co-simulator results/data)
 - 5. Run applications in simulator accessing memory files
- Peripheral can be integrated into different platform evaluation systems

