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Tradespace Analysis Tool for Design of Distributed Missions
Pl: Dr. Jacqueline Le Moigne, NASA GSFC

Objectives:

Provide a framework to perform pre-
Phase A mission analysis of Distributed
Spacecraft Missions (DSM)
- Handle multiple spacecraft sharing mission
objectives
- Include sets of smallsats up through
flagships
- Explore tradespace of variables for pre-

defined science, cost and risk goals, and
metrics

- Optimize cost and performance across
multiple instruments and platforms vs. one
at a time

Create an open access toolset which
handles specific science objectives and
architectures

- Increase the variability of orbit
characteristics, constellation
configurations, and architecture types

- Remove STK licensing restrictions
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Value, Cost, and Risk Module

e Addresses the TAT-C Objectives that require cost and risk
evaluations; given a satellite constellation architecture, the VCR
module will provide estimates of:

- Value, expressed in dollars or utility
— Cost, life cycle cost (RDT&E, manufacturing, launch, operations)
— Risk, profile of the system technical and cost risk

¢ VCR Module will enable trades between performance and value/
cost/risk more readily

This presentation addresses the need for an automated,
iIntegrated cost model for constellation mission design and
the associated cost estimating challenges.
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Historical Context
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Building an Aggregate Cost Model

e Motivation

- Constellation architectures require that traditional cost estimating
assumptions be challenged

- Previous work has highlighted the limitations of existing models with
respect to constellation missions

e (Objective
— Develop an automated cost estimating approach for constellation
missions that will help enable early design phase trades

— Build the approach in such a way that it is easily manipulated and
highly transparent

e (Challenges
- Automated cost estimation often results in skepticism
- Model must be able to adapt to technological innovation
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Selected Approach

¢ Interoperable, parametric cost estimating tool to interface
with TAT-C
- Parametric estimating allows for a top down approach

e More appropriate in early stages of design; does not require
extensive design decisions

e Cost Estimating Relationships (CERs) can be easily updated

- Want to leverage existing and trusted techniques and apply
them to Distributed Spacecraft Mission (DSM) and
constellation architectures

e Allow for relative trades between cost and capability
— Early stage mission cost estimates are relative, not absolute

¢ Plan to supplement the parametric approach with an analogous
cost estimate to ensure model fidelity
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State-of-the-Art and Existing Literature

e Many widely accepted cost estimating tools exist, including:
— Unmanned Space Vehicle Cost Model (USCM), Version 10
- Small Satellite Cost Model (SSCM), 2014 Release
— NASA Instrument Cost Model (NICM), Version 7
— QuickCost, Version 6.0
— Programmatic Estimating Tool (PET)

e Popular references:
— NASA Cost Estimating Handbook, Version 4.0
- Space Mission Analysis and Design, 3 Edition

e Previous work has highlighted the limitations of these tools
for constellation missions:

- Limitations of traditional cost models for high performance small
satellites, motivating the SSCM [Abramson and Bearden, 1993]

— Small satellite learning curve parameters, COTS components,
technological complexity as they pertain to DSMs [Nag et al.,2014]
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Model Comparison

Unmanned Space Vehicle Cost Model (USCM, Version 7) and Small Satellite
Cost Model (SSCM, 1998) results for TAT-C generated spacecraft

— Spacecraft are identical, with IR Sensor payloads, except for total mass
- Payload cost differs substantially between the two models
e Motivation for alternate payload costing approach
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Implementation

e VCR Module Cost Routine combines existing models and
applies them to DSMs
1. Assesses mission characteristics (e.g. number of spacecraft)

2. Costs spacecraft and payloads appropriately
e USCM for spacecraft >= 1000kg
e SSCM for spacecraft < 1000kg

- Future work: Implementing a cube satellite specific model for < 20kg

e NASA Instrument Cost Model (NICM) for primary payload
instruments

3. Applies existing best practices to adjust for system level cost
considerations (e.g. learning curve, design heritage)

4. Uses current launch vehicle market prices to estimate launch
cost and operational support requirements

5. Formats cost estimate and record caveats to valuation

:I'- Future work: Weighting function at crossover

e Shao et al. (2014) took a similar approach to Performance-
Based Cost Modeling, leveraging USCM, SSCM, NICM

€arth Science Technology Office

10



Sample Output

{ Truncated output JSON
"constellationCost": { Advantages:
" ICost": { - Human readable, promotes transparency
totalCost™ - Formatted to mimic Work Breakdown
"estimate": 285896.029, Structure
"standardError": null, haQteroperability

"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "

b
"rdteCost": {
"estimate": 81346.161060,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "

}7

"drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",
"spacecraftRank": [1,2]
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Sample Output

"constellationCost": {
"totalCost": {
"estimate": 285896.029,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "

b
"rdteCost": {
"estimate": 81346.161060,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "

b
"drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",

"spacecraftRank": [1,2]
}
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Sample Output

"constellationCost": {
"totalCost": {
"estimate": 285896.029,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "

b
"rdteCost": {
"estimate": 81346.161060,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "

b
"drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",

"spacecraftRank": [1,2]
}
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Sample Output

"constellationCost": {
"totalCost": {
"estimate": 285896.029,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "

b
"rdteCost": {
"estimate": 81346.161060,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "

b
"drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",

"spacecraftRank": [1,2]
}
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Sample Output

"constellationCost": {
"totalCost": {
"estimate": 285896.029,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "

b
"rdteCost": {
"estimate": 81346.161060,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "

b
"drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",

"spacecraftRank": [1,2]
}
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Sample Output

"constellationCost": {
"totalCost": {
"estimate": 285896.029,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "

b
"rdteCost": {
"estimate": 81346.161060,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "

b
"drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T",

"spacecraftRank": [1,2]
}

eeeeeeeeeeeeeeeeeeeeeeeeeeee

16



Sample Output

"constellationCost": {
"totalCost": {
"estimate": 285896.029,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "

b
"rdteCost": {
"estimate": 81346.161060,
"standardError": null,
"confidencelnterval": [lowLimit, highLimit, probability]

"caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "

b
"drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T",

"spacecraftRank": [1,2]
}
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Current Status

e (Cost Routine Version 1 is being integrated TAT-C as a set
of MATLAB functions

e Short term remaining tasks:
— Transition model to C++
— Cost Risk Estimation, will depend on risk methodology
— Operations and Ground Segment
e Future Work

e | ong term:

— Continued bench marking the model for reliability
— Upgrade CERs to most recent formulae
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Future Work

e (QOperational Challenges

— Operations and maintenance can be most expensive
constellation mission element

- How reliable are existing methods for constellations
and what is the impact of increasing automation?

e Automation would increase Research and Development
but decrease cost of operations

e Discontinuity at transition between USCM and SSCM
— Weighting function (0-1) applied near transition

— Will determine the appropriate blend of these methods
during final model benchmarking
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Conclusion

e Aggregate cost model leverages existing tools and applies
them to DSM and constellation architectures, while
addressing limitations of existing methodologies

e This approach allows for integration of cost with early
tradespace exploration

- VCR is designed for TAT-C, but the form and function will
allow for interoperability

- Promote cost estimating transparency in automated
processes

— Relative cost estimates for architecture comparison

e (Continues to reveal limits of cost estimating techniques
for constellations, and inform future DSM development

€arth Science Technology Office
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Thank you for your attention!
Any questions?
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Additional Slides: Key Assumptions

Comparative, not an exact value, estimate

- Estimate should provide an approximation that can be used
for tradespace analysis

Comparison during concept evaluation, not as direct
budgeting tool

CERs are based in historical trends; assume that the
trends will hold into the foreseeable future

- Major technological changes will impact model fidelity
- Smallsat launchers could cause significant changes

Prototype, not protoflight, hardware development process
Scope creep is not considered
Project is executed at the optimal pace
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Acronyms

CER: Cost Estimating Relationship

COTS: Commercial Off The Shelf

DSM: Distributed Spacecraft Missions

DOD: Department of Defense

IR: Infrared

JSON: JavaScript Object Notation

NASA: National Aeronautics and Space Administration
NICM: NASA Instrument Cost Model

PET: Programmatic Estimating Tool

RDT&E: Research Development, Test, & Evaluation
SSCM: Small Satellite Cost Model

TAT-C: Tradespace Analysis Tool for Constellations
USCM: Unmanned Space Vehicle Cost Model

VCR: Value, Cost, and Risk
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