25 nm InP HEMT LNAs and Receiver Technology for the TWICE Instrument

6-15-2016

Presented by Bill Deal

William R. Deal, Pekka Kangaslahti*, Alex Zamora, Erich Schlecht*,

VALUE OF PERFORMANCE

NORTHROP GRUMMAN

Kevin Leong, Gerry Mei, Sean Shih, and Steven C. Reising**

Northrop Grumman, Jet Propulsion Laboratory*

and Colorado State University**

- Outline
- Motivation
- 670 GHz Receiver Update
- 230-390 GHz Update
- Conclusion

TWICE Receiver Overview

- · Three millimeter/submillimeter wave receivers on instrument
- Two receivers implemented in recently available 25 nm InP HEMT
 - 660-680 GHz dual direct detection receivers (two orthogonal polarizations)
 - 230-390 GHz broadband receiver
- This talk provides an overview of progress of these two receivers

Scaling enables significantly enhanced performance

- -25 nm gatelength
- f_{max}: 1.5 THz
- $-f_{T}$: 0.61 THz

Submillimeter LNA's

670 GHz Comparison

	Ambient Temperature [K]	Noise Figure [dB]	Noise Temperatur e [K]
HEMT	270 25	9.6 3.8	2355 400
GaAs Schottky	270	9.4 DSB (12.4 SSB*)	2236 DSB (4750 SSB*)
HEB	Cryo	2.7 DSB (5.7 SSB*)	250 DSB (788 SSB*)
SIS	4	1.3 DSB (4.3 SSB*)	100 DSB (491 SSB*)

850 GHz Comparison					
	Ambient Temperature [K]	Noise Figure [dB]	Noise Temperatur e [K]		
HEMT	270	12	3361		
GaAs Schottky *Perform	270 ance estimated f	9.8 DSB (12.8 SSB*) rom plot. SSI	DSB 2500 (5236 SSB*) 3 is caiculated		

- InP HEMT LNA sensitivity approaches that of DSB mixers.
- InP HEMT LNA is superior to that of mixers operated in SSB mode.
- This extends to cryogenic operation.

NORTHROP GRUMMAN

<u>THz Monolithic Integrated Circuit (TMIC)</u>

670 GHz Receiver Approach

- Final receiver is an integrated, single-block 670 GHz Receiver
- Module includes:
 - Feedhorn (JPL)
 - LNA MMICs
 - Bandpass filters
 - Zero Bias Detector (VDI)
 - Video Circuitry
- Each functional block has been prototyped and evaluated
- Components have been evaluated together to evaluate integrated performance

670 GHz LNA

• 670-GHz LNA:

25

20

15

10

5

0 | 660

Noise Figure and Associated Gain

(dB)

- 8-stage, single-ended design
- 2-Finger 12 μm HEMTs
- 655 μm x 375 μm die size

Packaged 670-GHz LNA Measured Gain and Noise Figure

665

Packaged LNA TMIC

670 GHz LNA Gain vs. Temperature

Detector Responsivity Measurements

670 GHz Radiation Pattern

CNC Machined Bandpass filter

Room Temperature 670 GHz Receiver Noise Temperature Characterization

NORTHROP GRUMMAN

Cold Load	Hot Load	Hot Load	Cold Load	Calculated Noise
Temperature	Temperature	Output Voltage	Output Voltage	Temperature
[K]	[K]	[mV]	[mV]	[K]
178	290.65	61.05	59.19	3406.81

- A single feedhorn integrated in the module will cover the 240, 310 GHz direct detection bands and the 380 GHz sounder band
- On-wafer test results for a full chip set

Matches simulations

•

•

•

15-dB gain measured on-wafer

Additional ripple from on-wafer

Photograph of 230-390 GHz MMIC

calibration/ noise in measurement 21 18 15 12 390LN1A_P_R8C4M0 Gain [dB] 390LN1A_P_R7C4M0 390LN1A P R6C4M0 9 90LN1A P R5C4M0 390LN1A P R4C4M0 390LN1A P R8C4M0 6 90LN1A_P_R7C4M0 390LN1A_P_R6C4M0 90LN1A_P_R5C4M0 3 90LN1A_P_R4C4M0 390LN1A EM 390LN1B EM 0 220 240 260 280 300 320 340 360 380 400 420 440 Frequency [GHz]

230-390 GHz Receiver: Packaging Approach

Currently:

230-390 GHz LNA with on-chip transition does not provide a significant advantage in receiver noise temperature compared to a diplexer followed by narrower band amplifiers

7 dB Measured Noise Figure (NT=1200K) @ 380 GHz

Frequency Sweep, -1.5 dBm in

Knowledge to Go Place

Pout 1.60 🗕 30 um 1.40 60 um Chip 2-18 data 60 um Chip 2-23 data 1.20 ····· Pin/10 М 1.00 **Pout, Pin/10, r** 09'0 0.40 0.20 0.00 170 175 180 185 190 195 200 205 210 **Output Frequency, GHz**

NORTHROP GRUMMAN

- Significant progress has been made in the new TWICE receivers
 - "Breadboard" demonstration of 670 GHz direct detect receiver complete
 - 230-390 GHz MMIC components demonstrated
- Currently completing 2nd MMIC design iteration
- Integrated Receiver housing on order
- Prototype will be assembled and tested by August

THE VALUE OF PERFORMANCE.

