

Predicting the future of the Amazon rainforests using regression analysis

Kamalika Das NASA Ames Research Center

Joint work with: Anuradha Kodali⁺, Sangram Ganguly⁺, Marcin Szubert⁻, Josh Bongard⁻ + NASA Ames Research Center

- University of Vermont

Problem Definition

- Understand magnitude and extent of ecosystem exposure, sensitivity and resilience to the 2005 and 2010 Amazon droughts
- Understand the effect of climatic factors on vegetation anomalies using regression analysis

Motivation

Nature Climate Change 3, 292–297 (2013) | doi:10.1038/nclimate1693 Received 21 March 2012 | Accepted 28 August 2012 | Published online 30 September 2012

Problem formulation

- Point-to-point regression analysis
- Estimate spatio-temporal dependency of forest ecosystems on climate variables

$$V_{ij}^{t} = f(Lc_{ij}, E_{ij}, CV_{ij}^{t}, CV_{nb}^{t}, CV_{ij}^{t-1}, CV_{nb}^{t-1}, \dots, CV_{ij}^{t-k}, CV_{nb}^{t-k})$$

V:vegetation, LC:landcover type, CV:climate variable(s) E: elevation i,j: pixel location indicest: time indexnb: spatial neighborhood of index i,jk: temporal dependency

Open challenges: 1. Estimating function *f* 2. Estimating best choices for *k*, *nb*

Data sets

- NDVI: Normalized Difference Vegetation Index (MOD13Q1: Terra MODIS, Collection 6)
 - NDVI = (NIR-RED)/(NIR+RED)
 - Spatial Resolution: 1km (originally 250m)
 - Temporal Resolution: seasonal (originally 16 day)
- Land Surface Temperature (day temperature) (MOD11A1: Terra MODIS, Collection 6)
 - Calculated using data from Thermal Infrared Region bands of MODIS sensor
 - Spatial Resolution: 1km (originally 1km)
 - Temporal Resolution: seasonal (originally daily)
- Precipitation (TRMM Product 3B43V7)
 - Total hydrometeor mass in the atmosphere column using microwave part of the spectrum
 - Spatial Resolution: 1km (originally 25km)
 - Temporal Resolution: seasonal (originally monthly)
- Elevation (GTOPO30)
 - Global digital elevation model
 - Spatial Resolution: 1 km
 - Derived feature: Slope (Horn's method)
- Landcover Mask (LCT from MOD12Q1.051, Collection 5)
 - Spatial Resolution: 1 km (originally 500m)

Amazon Region

Trend analysis: MODIS NDVI

Trend analysis: MAIAC NDVI

Trend analysis: LST

Trend analysis: TRMM

Pixel Count: 444983

Mean NDVIMAIAC(h10v08)

Drought signals

 \sim

9000

8800

Pixel Count: 955736

\,' 3 1

Mean NDVI6(h11v09)

Vegetation trend

8700

8600

Regression setup

- Dependent variable (target): vegetation
- Independent variables (covariates/regressors)
 - Precipitation
 - Land surface temperature
 - Slope
 - Historical vegetation
- Modeling scenario: vegetation during the dry season as a function of historical (up to 1 year) and current covariates
- Learning model on data from 2003-2005
- Season definitions:
 - Dry season: July-September
 - Wet season: November February
 - Dry to wet transition: October
 - Wet to dry transition: March June
- Optimization metric: Normalized mean square error

Symbolic regression

- GP Settings
 - Age Fitness Pareto Algorithm
 - Objective: NMSE on training data, age of individual, size
 - 1 random individual added each generation
 - Pareto tournament selection of size p=2
 - 500 individuals evolved for 1000 generations
 - Function set: {+*-/log exp}
 - Terminals: independent variables and random constants drawn from a Gaussian distribution
- Final Solution
 - Choose point from Pareto front that is closest to ideal solution

Results

- Training model on data from years 2003-2005
 Symbolic regression based genetic programing
- Validation error on best model: 0.034
- Task using model:
 - Predicting vegetation for the dry season for entire Amazon for years 2006-2010

Prediction errors

Years	Tiles			
2006	0.034	0.022	0.011	0.025
	0.008	0.010	0.021	0.053
	0.017	0.016	0.080	0.108
2007	0.037	0.023	0.007	0.159
	0.016	0.013	0.334	0.142
	0.018	0.047	0.512	0.675
2008	0.028	0.019	0.008	0.053
	0.008	0.009	0.087	0.028
	0.024	0.016	0.153	0.068
2009	0.150	0.088	0.023	0.072
	0.023	0.023	0.145	0.153
	0.016	0.024	0.152	0.105
2010	0.028	0.018	0.007	0.079
	0.022	0.018	0.181	0.036
	0.046	0.051	0.092	0.373

Spatial distribution of errors

Urbanization increased in South-East region of Amazon from 2005 -> 2010

High error regions: logging

Model analysis

- Does this mean we have a model defining the exact relationship between precipitation, land surface temperature, and vegetation?
 - Can any data source for temperature and precipitation be used as regressors?
 - Use CRU data for verification:
 - Transfer learning for extending model to CRU data
 - New model

Spatial distribution of errors on CRU

- Model built on observation data: not available for future prediction
 - Use global climate models' output as surrogate
 - NASA Earth Exchange Downscaled Climate Projections (NEX-DCP30)
 - Ensemble statistics of 33 models and 4 greenhouse emission scenarios from CMIP5
 - Temporal resolution: monthly
 - Spatial resolution: 25km
 - GP model transfer-learned for GCM data

Predicting the future of Amazons

Predicting the future of Amazons

• Explaining high error regions

2010.02

Predicted (GCM) & observed (TRMM/LST) temperature (left) and precipitation (right)

Conclusions and future directions

- Linear modeling does not capture the real dynamics between different climate variables and vegetation in the Amazon
- Symbolic regression uniquely identifies the feature space on which linear models can be learnt for different data sources
- Error distribution on Amazon NDVI indicates that model can be used to predict the future of Amazon rainforests, even under multiple severe droughts.
- Work in progress
 - Scaling model to global scale
 - Identifying latent factors in areas where model does not generalize
 - Using hierarchical modeling for combining local and global models

Questions?