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Science Overview

Goal is to understand the time resolved behavior of CO, CO,, and
CH, in the Earth’s atmosphere. This requires...
— High cadence to understand temporal variations in sources and sinks

— High spatial resolution to get accurate measurements against a ground
background

— High spectral resolution to get accurate abundances and vertical sounding
information
Infrared immersion gratings are an enabling technology because
they can shrink instrument volumes by about an order of
magnitude and can be less polarization sensitive.

— Complete spectral coverage over a wide swath of wavelengths using a
cross-disperser to get many orders on a detector with no spectral gaps.

— Long-slit spectra in side-by side units to increase the field of view
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Technology Overview
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Technology Overview

By correctly orienting the disk surface with respect to the silicon
crystal planes, we can produce a grating with any blaze angle.

6.16°

54.7°
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Technology Overview

10pm EHT =10.00 kV
WD= 11mm

Signal A = SE2 Date :24 Sep 2009
Mag= 4.14 KX

Photo No. =4825  Time :10:32:49

The perfect shape and low
roughness of etched grooves

means low scattered light levels.
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Deployed Technology

Silicon grism flight parts:
* James Webb Space Telescope NIRCam
* FORCAST on SOFIA Telescope

Echelle immersion gratings:

* Immersion GRating Infrared
Spectrograph (IGRINS) installed at
McDonald Observatory

* iShell for the NASA InfraRed Telescope
Facility

* Planned GMT Near InfraRed
Spectrograph (GMTNIRS) for the Giant
Magellan Telescope.

: The University of Texas at Austin
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Spectrum from the IGRINS instrument

IGRINS:
1.45-2.5 um
R =45,000
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REVIEW OF JOINT UTEXAS/JPL ACT
PROJECT
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Summary of research goals

* To build and thoroughly test a set of silicon
immersion gratings customized for the needs
of Earth observation systems using a variety of
patterning methods through a collaboration
between The University of Texas at Austin and
Jet Propulsion Laboratory
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Overview

e Spectrometer conceptual design

* Process
— Materials preparation
— Manufacturing methods
— Testing
* Lithography methods studied
— Contact printing with wet etching
— Binary e-beam lithography with wet etching
— Grayscale lithography with plasma transfer etching

* Summary
* |nstrument designs

The University of Texas at Austin
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Spectrometer design

* Conceptual design completed by JPL for three
infrared channels:

— 1.598-1.659 um
— 2.045-2.080 um
— 2.305-2.385 um
* Grating parameters optimized for efficiency vs.
blaze angle
— Blaze angle defines the silicon material preparation

— Grating constants (i.e., distance between grooves)
defines the photomask or electron beam pattern

The University of Texas at Austin
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Spectrometer Design

Spectrometer layout Detail of immersion grating
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Background: process flow

Precision orienting and

cutting substrates Outside vendor

At UT or JPL

Optical polishing €

‘l' AtUT

Apply nitride hardmask Strip PR and clean €

Clean and spin on
photoresist

‘l’ _ oor
Expose photorebmst Evaluate P
(contact print or e-beam) ine quali

Silicon nitride etch ¢ good T

AR coating

(Plasma etch)

Shape into prism
bad, rework T

Groove etch
(KOH Wet Etch)

Surface Silicon nitride strip

(Hot phosphoric)
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Silicon substrate preparation

Material preparation requires
coordination of:

<€ 100 mm >

1. Float-zone silicon boule,
resistivity of >10,000 ohm-cm.
2. X-ray crystallography to
orient to 0.04°. Tilt and slice
boule.

3. Chemically mechanically
polished to A/10

4. LP-CVD silicon nitride 600 A
+ 5%

Completed substrate ready
for manufacturing

The University of Texas at Austin
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Manufacturing
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Testing and analyzing
\

Specification

Front surface A/4 in immersion
interferogram in or ~120-180 nm
Littrow at 633 nm  peak-to-valley

(~2.15 um in

immersion)

Laser spectrum Ghosts <2 x 103
Imaging with Smooth surface,

scanning electron <<1% defect
microscope (SEM) area, confirm
blaze
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Modeling and interpreting the

interferogram
Interpreting the interferogram ‘ piston
— We model the interferogram Pl o/l
using the first few Zernike - ‘ ' P
terms to model the large
g . Z/QQ)‘ -22 ) astig/focus

scale aberrations

) 2o
]
— We subtract the large and \ .Z;:s 4 < Z‘ %
medium scale aberrations e a - @( Y
. ! Y . Q2 0 2 < 4
from the full interferogram — /24 \ R R R
: I @) > <
— We call what it left the Q7 Zgl<‘ v W

residual error

Zom-B at en.wikipedia, CC BY 3.0, https://
commons.wikimedia.org/w/index.php?

- The University of Texas at Austin curid=15880824
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Modeling and interpreting the
interferogram

p +100.00

Full interferogram Zernike terms: Residual error
Large-scale error

30mm beam
71° grating
PV =187 nm (0.29 waves at 633 nm)
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Laser spectrum

O 0 0 K04_flat_log.fits (50%)

HeNe
Laser

I::l Beam Expander/Collimator

\

CCD Camera Plano- Spli 0 o _
Convex Lens 5€am Splitter ptic to measure:
Grating in Littrow or
Mirror
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Focus of work

* Step-by-step process analysis.

— Lithography: non-uniformities are directly
patterned into the silicon

— Plasma etching: optimized for uniformity
— Wet etching: optimized for uniformity

* Largest contributor to the quality of the
gratings is the lithography step

* Focus of work is improving and optimizing
lithography

The University of Texas at Austin
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Lithography methods studied
Method |Advantage | Disadvantage

Contact printing Established process Larger grooves =

(UTexas) higher order
gratings

E-beam lithography Small grooves 2> Complex process

with wet etching low order gratings  Rowland ghosts

(JPL/UTexas)

Grayscale No pre-aligned Less precise blaze

lithography with silicon needed Lower efficiency

transfer etch (JPL)

The University of Texas at Austin
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Method 1: Immersion grating built using
contact lithography

1. Process improvements in contact print lithography
2. Manufacture of contact printed grating
3. Shaping of grating into prism and testing

The University of Texas at Austin
Astronomy



1.1 Process improvements in contact print
lithography
Method to understand what UV exposure uniformity is required
to achieve grating quality necessary to meet instrument spec.

E10 Line shift vs. normalized dose

500 F~_ y = -588.16x + 549.95
T R?=0.99143

-1000 =
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-2000

E/E,

Substrate patterned with varying  Line edge has shift with respect
exposure dose. Phase front with ~ to changes in exposure = phase
laser interferometry shift vs. dose variation
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1.2 Manufacture of contact printed grating

Results of gratings manufactured on 18° blazed silicon substrates.

+0.02500

-0.02500

KO1 PV phase = 0.042 waves
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1.3 Shaping of grating into prism and
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1.3 Shaping of grating into prism and
testing

SEM of scrap pieces after cutting
showing the v-grooves.
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Method 2: Binary e-beam lithography with
wet etching of grooves

1. Process development for binary e-beam lithography
2. Manufacture and testing of e-beam grating

Groove constant

Land Groove
/)5 blaZe
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Method 2: Binary e-beam lithography with
wet etching of grooves

1. Negative photoresists
— Limited success

2. Positive resists using two-
stage writing
— Limited success

3. Chromium liftoff

— Successful!

high current low current

: The University of Texas at Austin
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2.3 E-beam with using chromium liftoff

r*

—_—

chromium
it
- M

| The University of Texas at Austin
&Y Astronomy




2.3 E-beam lithography with positive resists
using chromium liftoff technique

Chromium Ilf'toff results on test wafers

Steps 1-3b have been Steps 1-5 have all been
completed. The chromium completed. Groove top is now
line remaining is 350 nm 222 nm because of undercutting
wide. in step 5, the KOH groove etch.

The University of Texas at Austin
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2.4 Manufacture and testing of e-beam
grating

Chromium liftoff results on blazed substrate

Grating
surface

20.';(\Jlkv
Photograph of part KO4
patterned by e-beam and SEM of finished grating KO4

chromium liftoff.

The University of Texas at Austin
Astronomy



2.4 Manufacture and testing of e-beam grating

Phase Map

Oblique Plot

p +0.02500

-0.02500

* Front surface interferogram in Littrow at 18° for a 30 mm beam.

 Phase PV is 0.06 waves at 633 nm, corresponding to ~2.0 um in
immersion.

* Easily meets our specification of < 0.25 waves.

The University of Texas at Austin
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2.4 Manufacture and testing of e-beam
grating

K04 Laser Spectrum (dispersion)
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High dynamic range, front surface monochromatic spectrum of
same grating. Specification for ghosts is that they are < 2x10-3 of
the central peak; these are <104
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Method 3: Grayscale e-beam lithography and @
transfer etching

Dan Wilson and Rich Muller
Jet Propulsion Laboratory
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Grayscale E-beam Lithography Fabrication of
Silicon Immersion Gratings

Fabrication of 2.47 um period grating for the 2.045-2.080 um spectrometer design

* Chose to demonstrate smallest period required = most challenging, others easier
* Designed e-beam patterns, exposed, and developed resist profile

Process Resist profile after grayscale e-beam lithography
E-beam resist and aluminum discharge layer on substrate

Section Analysis

Dwell Time

100keV ...o.‘.o ...o...o
electrons

After discharge layer removal and resist development

— 1 —1—1—1— ]

* Blaze angle in resist = 6.2°
* Desired blaze angle in silicon = 21°
e Etch is used to amplify depth 35

After transfer etching

 L—1— 11— ]




Grayscale E-beam Lithography Fabrication of
Silicon Immersion Gratings

Transfer Etch of Resist Profile
* Inductively coupled plasma (ICP) reactive ion etching (RIE) in JPL MDL
* Adjust gas mixture and RF powers to achieve grayscale transfer of resist profile into Si

Silicon proﬁle after transfer etchmg Atomlc Force Microscope (AFM) profile

nm Section Analysis

450

L 1.328 um

RMS 110.84 nm

Tc DC

RaClc) 3.773 nm
9 - -

Rmax 18.223 nm

Rz 10.917 nm

Rz Cnt  wvalid
Radius 4.786 pm
2 Sigma 15.141 nm
¥ | I |
0 2.5 5.0 7.5 10.0
Hm surface distance 1.385 um
Spectrum Horiz distance(L) 1.328 pm
vert distance 362.97 nm
Angle 15.285 @
Surface distance
v Horiz distance
Vert distance
Angle
Spectral period DC
DC Min Spectral freq 0 /um
memgratld_etched. p0l Spectral RMS amp 29.891 nm

* Blaze angle in silicon = 15° (goal 21°) with some rounding at bottom
* Simulated diffraction efficiency from AFM profile had peak of ~48% 36



Grayscale E-beam Grating Etched into Silicon Prism @

(Grating 55 mm diameter, Prism antireflection-coated on non-grating side)

e Etched grating was measured to be uniform across the full aperture
* Blaze angle ~18 deg, simulated efficiency 53% peak, 43% in band




Silicon Immersion Grating Used in Spectrometer Testbe@

Silicon Immersion
Grating

e JPL Spectrometer Testbed used to demonstrate modular immersion
grating spectrometer design and components
* System was aligned and well-focused images of the slit were observed
to move across the detector as the illuminating monochromator
wavelength was scanned 38



Summary

* Three infrared channel spectrometers
designed for Earth science applications

— 1.6 um, 2 um, 2.3 um
 Manufactured three immersion gratings
— Contact printing process

— E-beam patterning with chromium liftoff
— Grayscale e-beam patterning with plasma transfer

* Placed immersion grating in the JPL
Spectrometer Testbed

The University of Texas at Austin
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Instrument designs for Earth science
applications

* Take advantage of increased dispersion in
silicon (n = 3.4) in the infrared

 Two options to consider:

— Immersion gratings

 Complete spectral coverage with cross-disperser
configuration

* Long-slit spectra in side-by side units to increase the
field of view

— Transmission gratings
* Can be laid out linearly in compact instrument
* Multiple spectrometers could be stacked in an array

The University of Texas at Austin
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Transmission grating spectrometer

S|it Beam
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X | :
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1 Grism
in Filter Wheel f2
<€ ~30 cm >

A Grism Design Review and the As-Built Performance of the Silicon
Grisms for JWST-NIRCam
Casey P. Deen, Michael Gully-Santiago, Weisong Wang, Jasmina

Pozderac, Douglas J. Mar, and Daniel T. Jaffe
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Cross-dispersed spectrometer
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