National Aeronautics and Space Administration

Deve P

Development of Double and Tripled-Pulsed 2-micron IPDA Lidars for Column CO₂ Measurement

Upendra N. Singh*, Tamer F. Refaat, Mulugeta Petros, and Jirong Yu NASA Langley Research Center

> Earth Science Technology Forum June 24, 2015

California Institute of Technology, Pasadena, California

Acknowledgement: Research and development supported by NASA Earth Science Technology Office (ESTO)

www.nasa.gov http://engineering.larc.nasa.gov/

> Objectives

Demonstrate CO₂ measurement capability using 2- M doublepulse IPDA lidar.

Extend measurement capability to include H_2O using 2- $\mathbb{K}m$ triple-pulse IPDA lidar.

CO₂ Double-Pulse 2-Wm IPDA Lidar

- Methodology
- Spectroscopy
- Instrument and Integration
- IPDA Ground Testing
- IPDA Airborne Testing
- CO₂ and H₂O Triple-Pulse 2-W m IPDA Lidar
 - Methodology
 - System Design
 - Specifications

Development of a Double-Pulsed 2-micron Direct Detection IPDA Lidar for CO₂ Column Measurement from Airborne Platform

PI: Upendra N. Singh, NASA LaRC

<u>Objective</u>

- Develop, integrate and demonstrate a 2-micron pulsed Integrated Path Differential Absorption Lidar (IPDA) instrument CO_2 Column Measurement from Airborne platform
- Conduct ground validation test to demonstrate $\ensuremath{\textit{CO}_2}$ retrieval
- Conduct engineering test flights to demonstrate ${\rm CO_2}$ retrieval from UC-12 aircraft
- Conduct post flight data analysis for the purpose of evaluation of ${\it CO}_2$ measurement capability

Mobile and Airborne $2\mu m$ IPDA LIDAR system

Approach:

- Repurpose existing hardware including previously developed transmitter, receiver and data acquisition system
- Complete fabrication of transmitter, wavelength control and receiver units assembly
- Integrate existing and to be developed subsystems into a complete breadboard lidar system
- Fabricate a mechanical structure and integrate completed subsystem
- **Co-Is/Partners:** Jirong Yu, Mulugeta Petros, Syed Ismail, NASA LaRC

Key Milestones

Design of laser transmitter assembly
Design, manufacture and assembly of receiver
Integrate subsystems into breadboard lidar system
Conduct ground test of the integrated lidar assembly
Integrate lidar system on UC-12 aircraft
Conduct post flight data analysis
10/12
10/12
10/12
10/12
04/13
04/13
06/13
07/13
07/14

TRL_{in} = 3 TRL_{out} = 5 (AIRCRAFT)

• IPDA lidar relies on the Hard Target Lidar Equation

$E \downarrow T = \eta \downarrow r \cdot \varphi \downarrow r \cdot A \downarrow t / \Delta R \uparrow 2 \cdot E \downarrow M \cdot \rho / \pi \cdot exp[-OD(\lambda, R \downarrow G)]$

• Double-pulse tuning defines CO₂ differential optical depth, the main IPDA product

 $dOD\downarrow cd = \int 0 \uparrow R = 2 \cdot \Delta \sigma \downarrow cd \cdot N \downarrow cd \cdot dr \approx ln(E \downarrow T, off \cdot E \downarrow M, on / E \downarrow M, off \cdot E \downarrow H, off \cdot E \downarrow M, off \cdot E \downarrow$

• Other IPDA products include ranging and surface reflectivity

Spectroscopy

- Standard models are used for estimating optical depth, return pulse strength, SNR and errors for any operating condition.
- Modeling and meteorological data are used for XCO2 derivation

0.61145 6

3

2

0.94553

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Ω

Optical Depth

2-micron double pulsed IPDA lidar

(5

IPDA Ground Testing: Setup & Measurement

Differential optical depthmodel and measurement

Dry mixing ratio

IPDA vs (in-situ)

measurement

20:00

10 Flights in March & April 2014

Date	Purpose	Duration	Location
March 20	Instrument Check Flight	2.1 hr	VA
March 21	Engineering	2.7 hr	VA
March 24	Engineering	3.0 hr	VA
March 27	Early morning	3.0 hr	VA
March 27	Mid-afternoon	2.5 hr	VA
March 31	Inland-Sea	2.5 hr	VA, NC
April 02	Power Station	2.4 hr	NC
April 05	With NOAA	3.7 hr	NJ
April 06	Power Station	3.0 hr	NC
April 10	Late afternoon	2.3 hr	VA

- Aircraft had temperature, pressure, humidity sensors, LiCor and GPS
- Some of the flights were supported by balloon launches

IPDA Airborne Testing: Sample Return Signals

- NOAA air sampling and IPDA lidar optical depth comparison.
- Return signal samples from different altitudes up to 6km.
- IPDA range measurements compared to on-board GPS.

IPDA Airborne Testing: Sample Return Signals

	NOAA Air Sampling	$NOAA$ Modeled X_{CO2}	IPDA Measured X _{CO2}	Sensitivity	Bias	Sensitivity %	Bias %
R_A	X _{cd}	$X_{cd,c}$	$X_{cd,m}$	$\delta X_{\text{cd},m}$	ΔX_{cd}	$\epsilon_{cd,m}$	$\beta_{cd,m}$
m	ppm	ppm	ppm	ppm	ppm	%	%
6125.6	400.75	404.08	405.22	4.15	1.14	1.02	0.28
5242.6	400.96	404.34	405.84	4.74	1.50	1.17	0.37
3976.7	401.61	404.89	406.60	8.69	1.71	2.14	0.42
3051.9	401.55	405.54	407.10	12.83	1.56	3.15	0.38

Comparison of the airborne air-sampling measurements, x_{cd} , and weighted average column dry-air volume-mixing ratio of CO₂, X_{cd} , for 4 GHz on-line wavelength setting at different altitude. X_{cd} are obtained from modeling through NOAA data, $X_{cd,c}$, and the IPDA lidar differential optical depth measurements, $X_{cd,m}$. IPDA X_{cd} measurement standard deviation, $\mathbb{X}X_{cd,m}$, offset, $\mathbb{X}X_{cd}$ ($\mathbb{X}X_{cd} = X_{cd,m} \mathbb{X} X_{cd,c}$), and measurement error, $\mathbb{X}_{cd,m}$ ($\mathbb{X}_{cd,m} = \mathbb{X}X_{cd,m}/X_{cd,m}$), are also listed. As well as the measurement bias ($\mathbb{X}_{cd,m} = \mathbb{X}X_{cd}/X_{cd,m}$)

Triple-Pulsed 2- μ m Direct Detection Airborne Lidar for Simultaneous and Independent CO₂ and H₂O Column Measurement

PI: Upendra Singh, NASA LaRC

Methodology

 With proper wavelength selection, independent H₂O & CO₂ measurement is achieved

 $\begin{bmatrix} \blacksquare dOD \downarrow 1, 2 @ dOD \downarrow 2, 3 \end{bmatrix} = \begin{bmatrix} \blacksquare ln(E \downarrow T, 2 \cdot E \downarrow M, 1 / E \downarrow M, 2 \cdot E \downarrow T, 1) @ ln(E \downarrow T, 3 \cdot E \downarrow M, 2 / E \downarrow M, 3 \cdot E \downarrow T, 2) \end{bmatrix} = \begin{bmatrix} \blacksquare iWF \downarrow wv \uparrow 1, 2 \\ & \& 0 @ 0 \& iWF \downarrow cd \uparrow 2, 3 \end{bmatrix} \cdot \begin{bmatrix} \blacksquare X \downarrow wv @ X \downarrow cd \end{bmatrix}$

- Laser transmitter design status: Crystal selection, concentration optimization, size optimization
- Crystal growth and fabrication –DONE

Major constraints and Rationales:

Thermal Dissipation of high repetition rate of an end pump system

- Laser Resonator Design
- 0.5 meter long ring resonator with in an endpump configuration

Large Q-Switch Laser alignment immunity to vibration environment

- The 792nm pump Beam has to match the 2µm beam size with a fixed divergence
- Optical layout and component placement configured.

The divergence has to match the 400 micron telescope field of view

Optical bench and enclosure size to remain the same to match the overall lidar footprint and configuration

Transmitter Design

NASA

Item	Parameter	Rationale
Laser Enclosure	Blue laser 6"x26"x11"	compatibility
Laser Configuration	Oscillator + Amplifier	
Output Reflectivity	70%	
size	2x2x15	Heat extraction
Pump configuration	End pump	Higher efficiency

Laser transmitter layout

OBJECTIVE: Generate three distinct wavelengths, with respect to a CO_2 absorption center-line locked wavelength.

1. Characterize three different seed laser technologies, Solid-State laser, Fiber laser and Semi-conductor laser and compare the suitability for the system with respect to :

a) output power,

- b) single frequency operation,
- c) short/long term wavelength stability,
- d) tuning range,
- e) tuning speed,
- f) CO₂ absorption center-line locking suitability
- g) power consumption and
- h) volume and weight.
- 2. The best laser will be locked to the CO_2 line

3. The three wavelengths will be generated as side band using Electrooptic modulators and fiber filters

Wavelength Control, Line Center Locking and Side Line Generation Layout

- 1,2 90/10 Fiber Splitter
- 3 200 MHz EO modulator
- 4 Fiber collimator
- 5 CO2 Cell
- 6 200 MHz RF Amplifier
- 7 Detector assembly
- 8 6-32GHz EO modulator
- 9 Fiber circulator
- 10,11 Fiber Filters
- 12 Online Locking circuit
 - 3 RF Oscillators (6.5/16/32GHz)
- 14 RF Amps
- 15 RF switch
- 16 Switch Control (from LTC)
- 17 Seed laser input (fiber)
- 18 Seed laser monitor (fiber)
- 19 Seed laser output (fiber)
- 20 24V Power Input (from LTC)

System specifications

ransmitter	Wavelength I	Energy	Pulse Width	
	$\lambda_1 = 2050.5094 \text{ nm}$	50 mJ	30 nsec	
	$\lambda_2 = 2051.0590 \text{ nm}$	15 mJ	60 nsec	
	$\lambda_3 = 2051.1915 \text{ nm}$	5 mJ	100 nsec	
	Repetition Rate		50 Hz	
	Beam Quality		$2.0 (M^2)$	
	Bean Divergence		150 µrad	
	Laser Line-Width		Transform Limited	
	Frequency Control Accuracy		<1 MHz	
	Spectral Purity	2	99.9%	
	Wall-Plug Efficiency		2%	
	Beam Expansion		x10	
5	Optical Efficiency		65%	
ceive	Telescope Diameter		40 cm	
	Optical Filter Spectral Width		1.6 nm	
R	Field-of-View		300 µrad	
a	Operating Temperature		-20°C	
or ^a	Bias Voltage		300 mV	
cto	Quantum Efficiency		67.75%	
ete	Dark Current		3.7 nA	
D	Capacitance		29.3 pF	
	Gain		10° V/A	
TIA ^{b)}	Bandwidth		3.5 MHz	
	Noise Current Spectral Density		450 fA/Hz ^{1/2}	
	Noise Voltage Spectral Density		$2.8 \text{ nV/Hz}^{1/2}$	
Env.	Background Solar Irradia	nce	0.5 mW/m ² .nm.sr	
	Surface Reflectivity (vegi/ocean)		0.09/0.08	
	Aircraft Speed	Aircraft Speed		
^{a)} In	GaAs pin. Hamamatsu Inc., G58	353-203.	^{b)} FEMTO, DHPCA-100	

Path to Space

NASA

,	Current	Projected	Current Space		
	Technology	Technology	Dominomon ^a		
	Technology	Technology	Kequiremeni		
Transmitter	Single-Laser	Single-Laser	Two Lasers		
Technique	Double-Pulse	Triple-Pulse	Single-Pulse		
Cooling	Liquid	Conductive	—		
Wavelength (µm)	2.051	2.051	2.051		
Pulse Energy (mJ)	100 / 50	50 / 15 / 5	40 & 5		
Repetition Rate (Hz)	10	50	50		
Power (W)	1.3	3.5	2.25		
Pulse Width (ns)	200/350	30/100/150	50		
Optical-Optical Efficiency (%)	4.0	5.0	5.0		
Wall-Plug Efficiency (%)	1.4	2.1	> 2.0		
Multi-Pulse Delay (µs)	200	200	250 ± 25		
Transverse Mode	TEM_{00}	TEM ₀₀	TEM_{00}		
Longitudinal Modes	Single Mode	Single Mode	Single Mode		
Pulse Spectral Width (MHz)	2.2	4-14	> 60		
Beam Quality (M ²)	2	2	< 2		
Freq. Control Accuracy (MHz)	0.3	0.3	0.2		
Seeding Success Rate	99	99	99		
Spectral Purity (%)	99.9	99.9	99.9		
^a ESA Report of Assessment, SP-1313/1 (2008).					

- CO₂ 2-Imm double-pulse IPDA lidar integration and validation at NASA LaRC
- Ground testing demonstrated successful CO₂ measurement as compared to in-situ sensors
- CO₂ airborne measurements agrees with validation models through NOAA air sampling
- IPDA lidar extended capabilities through triple-pulse operation, for simultaneous and independent CO₂ and H₂O measurement.
- Individual pulse wavelength tuning is achieved through advanced wavelength control unit
- LaRC is collaborating with NASA GSFC in developing AFT optics assembly and an advanced HgCdTe e-APD detector system for 2-micron IPDA lidar
- LaRC is also collaborating with JPL in incorporating and integrating a semiconductor seed laser in the wavelength control unit for triple-pulse seeding and switching
- Once realized, triple-pulse IPDA lidar will meet or exceeds current space requirement set by ESA, projected in A-SCOPE.

BACKUP

Triple Frequency Generating Scheme

• IPDA lidar relies on the Hard Target Lidar Equation

 $E \downarrow T = \eta \downarrow r \cdot \varphi \downarrow r \cdot A \downarrow t / \Delta R^{\uparrow 2} \cdot E \downarrow M \cdot \rho / \pi \cdot exp[-OD(\lambda, R \downarrow G)]$

the main IPDA product, simultaneously

 $dOD \downarrow 1,2 = \int 0 \uparrow R = 2 \cdot (\Delta \sigma \downarrow wv \uparrow 1,2 \cdot N \downarrow wv + \Delta \sigma \downarrow cd \uparrow 1,2 \cdot N \downarrow cd) \cdot dr = ln(E \downarrow T,2 \cdot E \downarrow M,1)$

 $dOD\downarrow 2,3 = \int 0 \uparrow R = 2 \cdot (\Delta \sigma \downarrow w v \uparrow 2,3 \cdot N \downarrow w v + \Delta \sigma \downarrow c d \uparrow 2,3 \cdot N \downarrow c d) \cdot dr = ln(E \downarrow T,3 \cdot E \downarrow M,$