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PCAES Summary

= ESTO/ AIST funded with start on May 1 2015 and completion on April 30 2017.
= TRL start at 2 end at TRL 4.

= Demonstrate new SW architecture borrowed from control theory to optimize ESFL
remote sensing data collection.

= Main output product is ability to generate optimized* power map and demonstrate
this capability through simulation and lab HW implementation.

*Optimized with respect to science data value.

= Year 1

Requirements flowdown for end-to-end modeling
Generation of multi-layer scenes for testing of the MPC-based architecture.

Evaluate optimization algorithms, in particular quadratic programming and gradient-based algorithms which
can both handles constraints.

Conduct sensitivity tests to understand how weighting the effects the performance of science extraction and
refining the optimization metrics.

Study of computation time versus optimization.

= Year 2

HW implementation in the adaptive lidar lab
Model validation and update
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Collecting More High Value 0
% Earth Science Data n-

= Challenging budgets demand reconsideration data collection process and data
exploitation.

= The remote sensing field benefits from a myriad of sensors and sensor suites of
increasing capability and complexity. Meanwhile, on-board systems for real-time
control of instruments have been limited in general to a few traditional
architectures.

= Focus of this program is to optimize instrument or instruments data collection
capability using advanced software architectures.
= Optimized systems many times result in complex systems. Characteristics are:

— Multiple constraints, nonlinear physics, time-varying systems, interacting,
multivariable systems and sometimes sparse data or missing data.

= Multiple Earth Science applications:
— Trend is for higher capability, scene-directed instruments in the future

— We focus program on multi-beam lidar systems (for example - electronically
steerable flash lidar (ESFL))
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Combine Dynamic Beam
Steering with a Flash Lidar
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i  Flash lidar creates 3D information cloud.
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*Beam pattern can be optimized real-time for
/Flash individual scenes
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« Beam Steering could be integrated with spacecraft
fo Attitude Control System (ACS) to ensure beam
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» Separate “cloud camera” can be used to provide
input to steer beams past clouds

* Number of beams could be varied to trade
coverage versus signal-to — noise

Spacecraft —» ACS

» Ground spot can be imaged on single pixels, or

spread over multiple pixels allowing finer detail.
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Architectural Component ‘

Transmitted Laser Beam

Comparison to Standard Lidar
Systems (Calipso base-line)

Current (CALIPSO-type)
Mission Paradigm
Single Laser — Single Beam

= Standard lidar system has narrow fixed ground track
— Highly inefficient due to clouds, repeat data, misses more interesting data.

‘ Model Predictive Controller Paradigm

Single Laser — Multiple Deflected Beams
Number, pointing, amplitude setvia MPC
defined rules/weighting

Beam Pointing

Fived

Dynamic — Adjustable for each frame

Receiver Pixels

Three, each boresighted to laser

256x 256 Flash Focal Plane Array —
sub-filed to achieve necessary SNR

Ground Sampling

Fixed — Along track only

Adaptive Both Along and Cross track

Data Density

Fixed — Set by laser rep rate and orbit
track

Adaptive — set by laser rep rate, beam
configuration, and orbit track

Operational Control

Fixed — autonomous
Uplinked manual mode control

Multi Process Controller -
Autonomous/Adaptive

Data bases

Geoid

Geoid, DEM, Maps to support objectives

Secondary Onboard Sensors

Cloud Context Imager , Infrared Imager,
Startracker, GPS receiver

Same, plus additional as needed e.g. steerable
radar for precipitation

Onboard Image Analysis

Mone

Cloud Discriminators, Lidar Image Analyzers,
Passive Camera Scene Analyzers User defined
(uploadable) mission driven scene
discriminators.

Lidar Optimization Goal

Maximize SNR using weaksst signal
{stratospheric Rayleigh scattering) — fixed

Maximize SNR for each Controller defined
objective for 2ach laser pulse

Lidar Optimization Method

Manual uplinked commands on quarterhy
schedule

Dayinight Gains switched twice/day

MPC control sets lidar configuration to achieve
SNR required to meet mission objectives, done
foreach frame
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% Example Problem Geometry and Power
Maps of Ground Scenes

= The scene on the left of the Panama
canal has a satellite ground track
with 4 time-separated instantaneous
lidar field-of-views.

= Assume sun-synchronous orbit at %"

700 km.
* If we use a much Simp"ﬁed metric of Ground track and moving FOV Power map before thresholding
light (clouds) areas are not of over Panama canal

interest (weight=0) and darker areas
contain our science (weight=1) we
can compute the optimal power
maps for our ESFL system for each
frame (see right-hand images).

= Note how fast the optimal weighting
changes for beam control between 4
images.
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% What is Model Predictive mn
Control (MPC)
= We have borrowed a control system architecture that has proven to be highly

successful optimizing complex non-space systems called model predictive
control (MPC).

— A conceptual analogy of MPC is frequently made to a driver in an automobile.
Driving through a city is very complicated and a difficult process to describe due to
complex and changing scenes, and the presence of many constraints (velocity,
brake stopping rate, other cars, weather, etc.).

— However, by making a series of continual corrections and taking into account future
events and past knowledge, one is able to navigate and get to ones destination.

— MPC works in a similar fashion, predicting future trajectories from embedded
models, past data and sensor updates, optimizing with respect to constraints,
weighting, and performance metrics, and then applying a control signal to some
type of actuator.

Reference | "1 Control Controlled

signal i signal output
> Optimizer > Process >

architecture is
very simple

Most basic MPC |

Predictor
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PCAES Involves Many N
% Intersecting Fields of Study n-

= MPC has a very general architecture and therefore it needs to be focused for the
ESFL problem. To minimize the work load, understanding analogies are important
for extracting methods/ algorithms from previous work.

= This will require a broad understanding of MPC and a variety of implementations
including use for:
— Wind power control with lidar
— Vision guided closed loop control
— Autonomous robotic systems

= Several other technology areas need to be understood:
— Sparse data representation and ground data spatial correlation (kriging)
— Predictive models
— Subspace system ID and in particular data-driven approaches

— Hierarchical architectures and include work already done in autonomous control from
space (JPL). How is hierarchical architecture and functions partitioned.

— Optimization approaches since computational speed is important.
— How DEMs are used and interaction with other data.

— Planning algorithms
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MPC Supports Development
Z of Hierarchical Systems nn

= Challenges: Data can be sparse, process dynamics are time-varying
Focus of PCAES program — fast lower level (sub- second)
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Lower Level Architecture --

= What we simulate is shown below. What is simulated in the lab is different since
there is no lidar return signal.

r p of science objectives
Blue - 5m surface elevation measurement objective
Green - hydrologic cycle measurement objective
Map of cloud locations . .
Real-time from IRVis More eﬂlclgn( capture of higher-
camera Map of prior altimetry data capture quality science data products
R o ik e
We| hts y & V’?l:mrscuoﬁgrc-en::geegave'%ve surface
g . 1 POWer ap i vty Gray - data not c;pture;! - .
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SUPEIVISOT o javation R = Reference
At, Altitude, Vis/IR camera, Uk—1 | level power
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7 Unique Aspects of MPC Solution nn

% to ESFL Beam Control (1/2)

= The MPC architecture is very general which makes it a powerful tool for solving a
wide range of complex problems — however one must selectively tune the
details for each unique application to fully take advantage of it’s inherent
capabilities.

= The MPC problem must be recast into a remote sensing problem and the remote
sensing problem recast as a control problem. What is plant? What is impulse

response? What are cloud obscurations? What is actuation? Camera (2 D) info
versus lidar information (3D) — what is equivalent feedback term?

= Time-varying “plant model” versus dynamic modeled plant. In fact, there is no
dynamic model of plant - only I/O data of time-varying system. — we don’t want
an explicit model.
— Borrow concepts from data-driven MPC control where only I/O data used.

— This is not completely correct as a dynamic model of the S/C ACS is needed for retargetting
maneuvers.
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% Unique Aspects of MPC Solution to nn
ESFL Beam Control (2/2)
= What we are controlling (spatial distribution of power, possibly range gate) is not
the science (DEM) although contributes to the overall data quality.
— Use concepts from luminance control for vision-based MPC. Use concepts from ultrasonic
control as equivalent to lidar range gating for 3" dimension

= Classical MPC involves system ID with impulses or steps to ID model.

— ESFL inputs (to the “plant” — scene) are always impulses of varying power and the power out is
a time-delayed waveform with varying temporal ( or height) resolution. Unlike impulse
response from dynamical systems, the correlation of each discrete time component can be
very low at times depending upon the scene (vegetation, ground, etc).

= Data is sparse due to obscurations (clouds, smoke, etc)
— In control terms, part of the scene is unobservable although we may have some a-priori
information.
= Control system is actually described as hybrid due to the discrete nature of the
moves. Most MPC based controllers are designed around continuous systems.

— A hybrid system is a dynamic system that exhibits both continuous and discrete dynamic behavior —
a system that can both flow (described by a differential equation) and jump (described by a difference
equation or control graph).
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Data Driven Control (DDC) [Hou201 3]
% . .
Basis for Predictor

= “Until now, there have been a few DDC
methods, but they are characterized by
different names, such as data-driven
control, data-based control, modeless

control, MFAC (model-free adaptive ST e ¢ o T e
control), IFT (iterative feedback tuning), is available | | Using MBC design methods
VRFT (virtual reference feedback tuning),| | oo moves A
and LC (feratve leaming control, | ===y | T
Strictly speaking, there are some complictd with o i orderor | Using DDC methods
differences between the terms data- C4. Mathematical model is difficult Using DDC methods
driven control and data-based control. o stalishorunavaiable [

Data-driven control hints that the Fig. 3. Contrlled objects of DOC

process is a closed loop control and its
starting point and destination are both
data, while data-based control means the
process is an open loop control and only

the starting point uses data.”
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% Summavry m"

= Very general architecture well-developed from ground and
aerospace community should translate well to support future
optimized Earth science missions.
— Must tailor the architecture to the application but overall approach will
transfer to other missions.
= There are several challenges identified but appear to have
solutions.

— Ultimately, “optimally” approach will be sub-optimal due to computational
limitations and knowledge limitations in predictor.

— Correlate weights to science desired.
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