

Wide-swath Shared-aperture Cloud Radar (WiSCR)

Earth Science Technology Forum June 25, 2015

 GSFC: Lihua Li, Paul Racette, Gerry Heymsfield, Matthew McLinden, Vijay Venkatesh, Michael Coon, Martin Perrine
 NGES: Richard Park, Michael Cooley, Pete Stenger, Thomas Spence, Tom Retelny

Outline - WiSCR Objectives

- Science Motivations
 - Science background
 - ACE / CaPPM radar concept
- Tri-band Antenna Architecture Study
 - Design trades
 - Performance parameters
- Ka-band AESA T/R Module Development
 - Module design
 - MMIC development
- Advanced Doppler Radar Technologies
 - Frequency diversity pulse pair Doppler technique
 - Multi-channel waveform generation and frequency conversion modules with shared circuit to reduce SWaP
- Summary and Path Forward

Science Motivations

- Clouds and precipitation are among the greatest sources of uncertainty in climate change prediction. Global-scale measurements are critically needed.
- Multi-frequency radar with Doppler and imaging capability is crucial for improved understanding of the characteristics of clouds, precipitation, and their interaction.
- Decadal Survey (DS) Aerosol Cloud Ecosystem (ACE) calls for a dual frequency (Ka/W-band) radar while the more recent Cloud and Precipitation Process Mission (CaPPM) concept requires a tri-frequency imaging Doppler radar.

Dual- or Tri-band Radar Concept for ACE and CaPPM

• IIP 2010 Achievements

- Demonstrated an efficient dualfrequency (Ka/W), shared aperture antenna architecture
 - Reflector/reflectarray technologies
 - > Sub-scale antenna
- Developed Scalable Antenna Designs (7-17 sqm)
 - > Dual-band (Ka/W) antenna
 - > Ka-band AESA feed
- > Ka-band T/R module
- ACE Technology Maturation Study (2013)
- Performed TRL assessment for Ka/W-band radar
- Identified key areas to be advanced
- Defined a pathway to space

Science Objectives Are Closely Tied to the Antenna Design and Associated Trades

Various antenna parameters must be balanced to meet mission objectives...

Radar Parameter	Antenna Parameter/Feature
Spatial Resolution	Aperture Size
Vertical Resolution	Tx Pulse Width
Field of View	Beam Steering
Polarimetry	Dual-Polarization
Sensitivity	Size, Radiated Power, Efficiency, Noise Figure
Data Diversity	Multi-Band Antenna

AESA and T/R Module Experience, Technology Base & TRL

- X/Ku-band AESA & T/R module technology is high TRL
 - NGES has extensive experience
- Ka-band AESA & T/R module technology rapidly maturing
 - Funded under ACE IIPs and demonstrated for various other programs/applications
- W-band AESA technology emerging
 - Funded under ACE IIPs and via other sources (e.g. DARPA)
- GaN MMIC technology proliferating very fast at X, Ku, Ka, & W-bands

Key Parameters from the Tri-Band Antenna Study Design Budget [Assuming a 7 sqm main reflector]

	Ku	Ka	₩ Fixed Beaṁ́	W AESA	Notes
Sensitivity (dBZ @ Nadir)	0.0	-12.9	-34.4	-31.4**	For Ku & Ka it assumes system dwells equally across swath. See below for W band **
Transmit Power (kW)	2.4	2.6	1.6	1.9	At antenna feed. 3-tier AESA Tx pwr
Antenna Gain (dBi)	49.8	58.3	67.7	66.7	Assumes 3 x 2.33 m antenna
Cross Track Resolution (km)	5.1	2.1	0.6	0.5	
Along Track Resolution (km)	3.4	1.4	0.7	0.8	
Cross Track Swath (± deg)	10.0+	8.5	N/A	2.0	
Noise Figure (dB)	3.3	4.6	5.7	7.0	
Number of Integrated Pulses	151	29	725	642**	Constant CT Scan Rate
Duty (%)	1.56	1.56	1.56	1.56	
Pulse Width (us)	1.67	1.67	1.67	1.67	250 m resolution
Number of T/R Modules	128	288	N/A	384	4 channel Ka & Ku module 8 channel W module

*Estimates assume the 7m² antenna architecture & CouldSat-style beam waveguide hardware

+ Greater swaths (e.g., +/- 17 deg) are supported with a minor adjustment in the assumed Ku band grid.

**AESA architecture permits flexible dwell times; dwelling longer in regions of interest is possible. This trade is most pronounced at W-band, where the beam width is most narrow. For reference, the sensitivity shown assumes dwelling on nadir only. A peak transmit power of 2W/site is assumed.

Antenna Architectures Were Derived Based on Detailed Radar System Budgets

Tri-Band Antenna Trade Study Assessment/ Conclusions

Objective Ka-Band T/R Module Design Development Path Overview

Integrated circulator, MMIC and ASIC development currently under development...

ESTF2015, June 25, 2015, Lihua Li, NASA GSFC

T/R Module RF Architecture Supports Efficient T/R Functionality and Polarization Diversity

Module front end architecture down-selected from 10 options

• Selected option provides best balance between system sensitivity, module cost and weight

Gradand SPACE FLIGHT CENTER NORTHROP GRUMMAN

Ka-Band AESA and T/R Module Overview System Performance Context: 4 Main Modes of Operation

NORTHROP GRUMMAN

Frequency Diversity Pulse Pair for Space-borne Doppler Measurement – Motivation

- Velocity folding and Doppler spectrum broaden due to spacecraft ground speed (7.6 km/s).
- Larger resolution volume could result in non-uniform filled beam and multiscattering biases.
- Required σ/2V_{max} < 0.3 for good Doppler measurements (v_{max} = ^{λ • PRF}/₄)
- Approaches:
 - large antenna: reduce $\boldsymbol{\sigma}$
 - higher PRF, stagger PRF: increase V_{max}

Doppler spectrum broaden

Non-uniform beam filling

Multi-scattering

ESTF2015, June 25, 2015, Lihua Li, NASA GSFC

Techniques to Mitigate Range-Doppler Velocity Ambiguity

	Pulse Pair	Dual-PRT Pulse Pair	Polarization Diversity Pulse Pair	Frequency Diversity Pulse Pair		
Pros	- Simple processing	- Mitigate velocity ambiguity	Mitigate range/velocity ambiguityHigh immunity to SNR	Mitigate range/velocity ambiguitySimple radar hardware		
Cons	- Decorrellation due to spacecraft motion	- Decorrellation due to spacecraft motion	Dual-pol Tx/Rx hardwarePoor channel isolation	 Performance at low SNR 		

ESTF2015, June 25, 2015, Lihua Li, NASA GSFC

Simulated Doppler Velocity Accuracy Versus Lag Time, Antenna Size and PRF

- Monte-Carlo based simulation
- Assuming scatter particle size distribution and use radar parameters to calculate backscattering power and phase
- Calculate Doppler velocity accuracy versus pulse pair lag time, antenna size, PRF, along track integration time et al.
- Preliminary results show potential to achieve ~1 m/s Doppler accuracy for Ka and W-band respectively for high SNR targets.
- More details are under study for low SNR cases.
- Roof-top test and airborne demonstration are planed.

Simulated 20

Simulated 10 dB SNR

Simulated 5 dB SNR

Simulated 0 dB SNR

30

Símulated 20 dB SNR

Simulated 10 dB SNR

Simulated 5 dB SNR

Simulated 0 dB SNR

Ant: 5m, Lag: 20 µs

Simulated -5 dB SNR

10

40

15

50

Simulated —5 dB SNR

20

Multi-Channel Tx Waveform Generation and Frequency Conversion Modules

Motivations:

- ACE/CaPPM radar requires multi-channel waveform generator and frequency conversion
- Use shared hardware to reduce ^{Ch} SWaP
- Risk reduction for space **Objectives**:
- Develop FPGA firmware based on a commercial module
- Support versatile waveform for pulse or pulse compression mode operation
- Develop compact, low power prototype frequency conversion module to reduce risk for space

Key challenging:

- Support up to 4 pulses and chirps per PRF cycle per channel
- · Use minimum bandwidth for multi pulses
- Amplitude modulation for better channel isolation in spectrum
- Minimize SNR loss due to amplitude modulation

Status:

- Channel frequency mapping, firmware development
- Module design, simulation and part selection

Frequency Domain Spectrum

Summary and Path Forward

- Tri-band, shared-aperture antenna study
 - Evaluated 3 classes and 10 candidate architectures
 - Down selected to primary candidates supporting final mission requirements
 - Addresses various band combinations with options for W-band fixed beam and scanning
 - Includes application of proven reflectarray technologies
- Ka-band AESA T/R module development
 - Module RF and mechanical design
 - MMIC and circulator development approaching fab
 - GaN HPA MMIC design verification test underway
- FDPP Doppler measurement technique development
 - Performance simulation
 - Roof-top test is under way
 - Airborne demonstration planned during the GPM ground validation campaign Olympex flights (Nov-Dec, 2015)
- Multi-channel waveform generation and frequency conversion
 - Developed multi-channel waveform generation firmware
 - Carried out frequency conversion module design and simulation
 - Frequency conversion module layout underway

Spaceborne Atmospheric Radar Past, Current and Future

	TRMM	CloudSat	EarthCare	GPM		ACE (GSFC/NGES)		CaPPM (GSFC/NGES)			
Frequency (GHz)	13.8	94	94	13.6	35.6	35	94	13.6	35	94	
Primary Target	Rain	Clouds	Clouds	Rain	/Snow	Clo	uds	Clouds & precipitation		itation	
Measurements	Reflectivity	Reflectivity	Reflectivity, Doppler	Reflectivity		Reflectivity, Doppler		Reflectivity, Doppler, & Polarimetric (option)			
Retrieval Products	Rain rate	IWC, LWC	IWC,LWC	Rain rate, particle size		IWC, LWC, particle size		IWC,LWC, particle size, rain rate, weather system dynamics			
Orbit Altitude (km)	402	720	400	407		420		420			
Transmitter	SSPA Array	EIK	EIK	SSPA Array	SSPA Array	AESA	EIK	AESA	AESA	EIK or AESA	
Tx Peak Power (W)	500	1820	1800	1012	146	2000	1600	2000	2000	1600	
Antenna Size (m)	2.1	1.85	2.5	2.1	0.8	2.3x3.0 to 3.0x5.0		2.	2.3x3.0 to 3.0x5.0		
Vertical Res. (m)	250	500	500	250	250/500	250	250	250			
Horizontal Res. (km)	5.2	1.4	0.8	5.2	5.2	2.0x1.5	0.75x1.0	5.0x4.0	2.0x1.5	0.75x1.0	
Cross Track Swath (km)	245	Nadir	Nadir	245	120	120	Nadir	245	120	TBD	
Nadir Sensitivity (dBZ)	18	-28	-35	17	12	-14.0	-34.0	1.0	-14.0	-34	
Swath Sensitivity (dBZ)	18	N/A	N/A	17	12	-11.0	N/A	4.0	-11.0	TBD	
Doppler Capability	No	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	
Polarimetric Capability	No	No	No	No	No	LDR	Optional	LDR	LDR	LDR	